

New Directions in Lightweight Cryptographic Primitives for RFID Applications

RFID CUSP Workshop January 23-24, 2008 John Hopkins University

Christof Paar University of Bochum and escrypt Inc. – Embedded Security www.crypto.rub.de

Acknowledgements

Joint work with

- Sandeep Kumar
- Lars Knudsen
- Gregor Leander
- Axel Poschmann
- Matt Robshaw
- Kai Schramm

Contents

1. Some general thoughts about cheap crypto

- 2. Lightweight Block Ciphers
- 3. Lightweight Asymmetric Cryptography
- 4. Lightweight Hash Functions

Why Do We Need Cheap Crypto?

- There is no other choice (aka RFID)
 "We need security with less than 2000 gates" Sanjay Sarma, AUTO-ID Labs, CHES 2002
- 2. There is another choice, but we like a long battery life Small ciphers improve usability of mobile devices
- **3.** There is another choice, but we like to save money A cipher X that saves \$0.01 over cipher Y can be very attractive in many products (esp. in high volume applications!)

 \Rightarrow Important for the myriad pervasive computing devices

Approaches to Lighweight Crypto

- Design highly efficient implementation of established cipher, e.g., AES, ECC
 Ex: [Feldhofer et al., CHES 04]
- Choose established cipher with short parameters (works mainly for asymmetric schemes)
 Ex: SECG standards, ECC with 112bit etc.
- **3. Design new lightweight ciphers** Ex: PRESENT, eSTREAM

Note: Option 3 is promising but daring.

New Lightweight Ciphers vs. Standardized Ciphers

- Most standardized ciphers (AES, 3DES, ECC, DSA,...) are by definition universal ciphers.
- Universal ciphers must provide very high security for **all possible** applications, costs are secondary
- Domain-specific ciphers (here: lightweight) can be better match for certain applications
- BIG question: security!

Lightweight ciphers exploit the trust-performance trade-off

Read: If possible, use AES – if you want to trade trust-in-cipher for costs, use PRESENT or such.

The cryptographic toolkit

Contents

- 1. Some general thoughts about cheap crypto
- 2. Lightweight Block Ciphers
- 3. Lightweight Asymmetric Cryptography
- 4. Lightweight Hash Functions

Lightweight Cryptography

 "We need security with less than 2000 gates" Sanjay Sarma, AUTO-ID Labs, CHES 2002

• \$3 trillions annually due to product piracy* (> US budget '07)

*Source: www.bascap.com

- ⇒ Authentication & identification problem: can both be fixed with cryptography
- \Rightarrow How cheap can we make symmetric ciphers?

Strong Identification (w/ symmetric crypto)

п

- 1. random challenge r
- 2. encrypted response y
- 3. verification

 $e_k(r) = y'$ y == y'

Challenge: Encryption function e() at extremely low cost

- almost all symmetric ciphers optimized with SW in mind
- exception: DES

Lightweight DES Architecture

- S replaces S1...S8
- S more robust against differential, linear, and David-Murphy attack than S1...S8
- no previous work (!)

Results – Lightweight DES

- based on (extremely) well-studied cipher
- TA product 12 times better than smallest AES architecture
- details: FSE '07 paper

Q: Can we do better??

PRESENT – An agressively hardware optimized block cipher for RFID

- pure substitution-permutation network
- 64 bit block, 80/128 bit key
- 4-4 bit Sbox
- 31 round (32 clks)
- "provable secure" against DC, LC
- joint work with Lars Knudsen, Matt Robshaw et al.

Resource use within lightweight ciphers

Round-parallel implementation of PRESENT (1570ge)

Results – PRESENT

AES128 DESXL112 PRESENT80 PRESENT80

- TA product 1-2 orders of magnitude better than smallest AES architecture
- Serial implementation approaches theoretical complexity limit: almost all area is used for the 144 bit state (key + data path)
- smaller than all stream ciphers
- details: CHES '07 paper

Contents

- 1. Some general thoughts about cheap crypto
- 2. Lightweight Block Ciphers
- 3. Lightweight Asymmetric Cryptography
- 4. Lightweight Hash Functions

Strong Identification (w/ symmetric crypto)

Potential weakness: attacker gets access to key on host device (e.g. firmware exploits) and starts cloning batteries

Strong Identification (w/ asymmetric crypto)

 \Rightarrow But how cheap can we build public-key algorithms?

Elliptic Curve Primitive

- **k**_{pub} Given a Point P on an elliptic 10curve E over GF(p): 8 $Q = \ell P$ *E*: $y^2 = x^3 + ax + b \mod p$ 6 У Public key Q is multiple of base \bullet point P Ρ group operation -8 -10 -6 4 6 8 10 $Q = P + P + \dots + P = \ell P$ 3P Х
- EC discrete logarithm problem:

 $\ell = dlog_P(Q)$

-61

-81

-10

P+P

Design Principles for Tiny ECC Processor

- Reduce memory
 requirements
- Reduce arithemtic unit area

- : memory amounts to more than 50% of design
- : avoid units like inverter
- + designed for specific size

 Keep it simple but efficient

: reduce control logic area multiplexers

Tiny ECC Processor Units

—

- Arithmetic Units
 - Multiplier
 - Squarer
 - inverter
- Point Multiplier
 - Control Unit
- Memory Unit

european Competence Center for IT Security

Most-Significant Bit Mult.

The Implementation: MSB Multiplier

Most-Significant Bit (MSB) Multiplier: n cycles for n-bit multiplier

Tiny ECC Processor: Design decisions

•	Arithmetic Units – Multiplier	 Most-Significant Bit Mult.
	 Squarer 	 Parallel Squaring
	– inverter	
•	Point Multiplier	
	 Control Unit 	
•	Memory Unit	

Lighweight Cryptography

Center for IT Security

lacksquare

Tiny ECC Processor Units

- Arithmetic Units
 - Multiplier
 - Squarer
 - inverter
- Point Multiplier
 - Control Unit
- Memory Unit

- Most-Significant Bit Mult.
- Parallel Squaring
 - Fermat's Little Theorem

Inverter – Some basic number theory

Fermat's Little Theorem

 $A^{-1} \equiv A^{2^{m}-2}$ if $A \in GF(2^{m})^{*}$

Straightforward exponentiation: 161 MUL + 162 SQ

Exploit exponent structure: $A^{2^{m}-2} = A^{111...110}$ (Itoh-Tsujii)

The Tiny ECC Processor Design

Performance and Results

Performance @ 4 MHz for standardized curves

Field Size	Arithmetic Unit(gates)	Memory (gates)	Total (gates)	Time (ms)
113	1,625	6,686	10,112	47
131	2,071	7,747	11,969	61
163	2,572	9,632	15,094	108
193	2,776	11,400	17,723	139

131, 163 bit: very practical bit sizes

Security levels?

Security of mid-size ECC

Costs for breaking ECC in *one year* w/ optimized attack *ASICs*:

ECC131p \approx \$2 million ECC163p: \approx \$1 trillion (> 20 years security)

cf. COPACOBANA @ [CHES06]

Contents

- 1. Some general thoughts about cheap crypto
- 2. Lightweight Block Ciphers
- 3. Lightweight Asymmetric Cryptography
- **4. Lightweight Hash Functions** (Special thanks to Matt Robshaw)

Hash-based authentication

- 1. random challenge r

y == y'

- 2. encrypted response y
- 3. verification H(k||r) = y'

Conventional wisdom:

Hashing is very cheap compared to "real" crypto algorithms

(e.g., popular assumption in ad-hoc network security community)

Lightweight Hash Function

"Best" results from literature

Hash Fct.	Output length	#Clk	Gate equiv.
MD5	128	612	8,400
SHA-1	160	1274	8,120
SHA-256	256	1128	10,868

- hash functions are far worse than block ciphers in hardware
- but we can build hash fct. from block ciphers

Hashfunctions from Block Ciphers (1)

Run cipher in Davies-Meyer mode

- with AES: ≈ 4000 ge, 1024 clk/block
- drawback: hash size = block size
- Rijndael with 192 or 256 bit block is appealing
- but area increases even more
- DES, PRESENT etc. not suited since 64 bit block

Hashfunctions from Block Ciphers (2)

Double-block length hash (Hirose construction)

- with PRESENT ≈ 4000 ge, 32 clk/block
- 128 bit hash output
- extension to triple block length possible but many cipher instances needed

We need dedicated lightweight hash functions!

- 1. Lighweight hash functions?
- 2. Lightweight public-key schemes?
- 3. Lightweight side-channel analysis (SCA) resistance?
- 4. Interaction lightweight crypto \leftrightarrow SCA resistance?

Related Workshops

SECSI – Secure Component and Systems Identification March 2008, Berlin

RFIDSec 2008 July 2008, Budapest

CHES – Cryptographic Hardware and Embedded Systems August 2008, Washington D.C.

escar – Embedded Security in Cars November 2008, Hamburg

Further Reading

Individual Ciphers

- 1. M. Feldhofer, J. Wolkerstorfer, V. Rijmen. *AES Implementation on a Grain of Sand,* Information Security, IEE Proceedings, 152(1):13–20, 2005.
- 2. G. Leander et al., *New Lightweight DES Variants Suited for RFID Applications*, FSE 2007.
- 3. A. Bogdanov et al., *PRESENT A Lightweight Block Cipher for RFID*, CHES 2007.
- 4. S. Kumar, *Elliptic Curve Cryptography for Constrained Devices*, PhD thesis, ECE Dept., Ruhr University Bochum, 2006.
- 5. S. Hirose, Some Plausible Constructions of Double-Block-Length Hash Functions, FSE 2006.
- 6. S. Kumar et al., *Breaking Ciphers with COPACOBANA A Cost-Optimized Parallel Code Breaker,* CHES 2006.

Surveys

- 7. T. Eisenbarth et al., *A Survey of Lightweight Cryptography Implementations*, IEEE Design and Test, 2007.
- 8. J.-P. Kaps, G. Gaubatz, B. Sunar, *Cryptography on a Speck of Dust,* IEEE Computer Magazine, 2007.

