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ABSTRACT 

HARDWARE EMULATION OF A SECURE PASSIVE RFID SENSOR SYSTEM 

SEPTEMBER 2010 

MICHAEL TODD, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Wayne Burleson 

 

Passively powered radio frequency (RFID) tags are a class of devices powered via 

harvested ultra high frequency (UHF) radiation emitted by a reader device. Currently, 

these devices are relegated to little more than a form of wireless barcode, but could be 

used in a myriad of applications from simple product identification to more complex 

applications such as environmental sensing. Because these devices are intended for large 

scale deployment and due to the limited power that can be harvested from RF energy, 

hardware and cost constraints are extremely tight.  

The Electronic Product Code (EPC) Global Class 1 Generation 2 (Gen2) 

specification [EPC08] is currently the de facto communication standard for passively 

powered RFID. One issue restricting deployment and a cause for some privacy concerns 

is a lack of security in the Gen2 protocol. We will demonstrate a potential solution to this 

problem by using a novel block cipher designed for low power and area constrained 

devices to encrypt and transmit sensor data. This will be done while maintaining 

backward compatibility with the original standard and will require no substantial changes 

to the reader. Our solution will also provide one way authentication, data integrity 

checking and will provide security against replay attacks.  
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In this thesis we will demonstrate an FPGA emulation of a Gen2 compatible 

RFID tag which will serve as a test bed for several novel features. We will leverage prior 

work involving several aspects of a tag [QL09] [PP07] as well as incorporate a novel low 

power encryption cipher [AB07] and external temperature sensor. Demonstrated in 

[CT08], FPGA emulation will allow for the independent verification of several 

components. This thesis will provide insight into the future of RFID and will provide 

insight into tag design as well as possible future updates to the Gen2 standard. 
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CHAPTER 1 

INTRODUCTION TO RFID 

1.1 Motivations 

Passive RFID tags are essentially a low cost integrated circuit (IC) and antenna 

that harvest RF energy and use it to power a small amount of analog circuitry, digital 

logic, and non-volatile memory. Passive tags do not have a battery and thus lack a way to 

actively transmit data. Instead, a process known as backscatter is used to reflect RF 

energy transmitted to the tag back to the reader. Fig. 1a from [DD08] illustrates the 

difference between an active and a passive RFID tag. An example of each is given in Fig. 

1b, showing that active tags are much larger and are used in applications such as 

automatic toll collection. Passive tags are significantly smaller and are typically used in 

inventory tracking applications [TF06], [WI10]. 

 
Figure 1: From [TF06], [WI10], [DD08] Passive vs. Active RFID. a) Passively powered RFID tags lack an 

independent power supply and must derive power and data from RF energy emitted by a reader, and 

communicate by reflecting RF energy back to the reader. b) Passive tags are significantly smaller and lower cost 

than active tags and could possibly be used in a greater number of applications. 
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Passive tags are primarily intended to function as a form of “wireless barcode” 

used for tracking, inventorying, and even preventing theft of merchandise. Arguably, the 

most high profile deployment of RFID technology was a mandate in 2004 when Wal-

Mart told its 100 top suppliers to provide RFID tags on all cases and pallets delivered to 

Wal-Mart by January 2005, with the next 100 to follow a year later [DD08]. Such high 

volume deployment inherently forces tight area constraints on these devices to reduce 

cost. Most claim these devices are generally in the range of 5k gates with a target price of 

1-5¢ [PP09].  

1.2 EPC Class-1 Generation-2 RFID Standard 

The EPCglobal Class-1 Generation-2 Radio-Frequency Identity Protocol for 

Communications at 860 MHz – 960MHz, which we will refer to as Gen2 throughout the 

remainder of this work, “defines the physical and logical requirements for a passive-

backscatter, Interrogator-talk-first (ITF), radio-frequency identification (RFID) system” 

[EPC08]. This standard has been widely accepted as the primary standard for passively 

powered RFID tags since its inception by EPCglobal in 2004 and the International 

Organization for Standardization (ISO) 18000-6C in 2006.  

There have been several published works involving designs which incorporate 

Gen2 directly [AM07], [CT08], [AM07] or seek to improve upon specific portions of the 

protocol [DB06], [QL09], [PP07], [AN07]. It is our goal to incorporate and build upon 

many of these works and create a type of guide to implementing Gen2 compliant tags. 

We do not however make the claim that our implementation is either 100% Gen2 

compliant or fully optimized for area and power, but we will discuss in detail how we 
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were able to design, validate, and emulate a design capable of communicating with a 

Gen2 compliant RFID reader. 

1.3 Prior Work 

1.3.1 WISP 

 The Wireless Sensing Platform (WISP) is a prototype RFID tag shown in Fig. 2. 

The WISP was designed by Intel and is a partially Gen2 compliant RFID tag constructed 

from a low power MSP430 microcontroller, analog circuitry, temperature sensor, and 

accelerometer [SA08]. It is in essence a software programmable RFID tag and has been 

utilized in several publications [HC07], [DH08], [SC09].  

 
Figure 2: Wireless Sensing Platform. WISP is designed from a low power MSP430 microcontroller, and includes 

several onboard sensors. 

  The WISP has been proven successful in many applications including medical 

devices [DH08], recognizing human activities [MB09], and light sensing [RS06], though 

the relatively large size and high cost would make such a device impractical for high 

volume deployment. Also, modularizing the software required to both perform the Gen2 

protocol, and any additional computation in the face of intermittent power from harvested 

RF energy provides a significant challenge. Our work will build upon the work pioneered 

by the WISP in two ways. First, we will leverage the idea of directly incorporating 

Accelerometer
Temperature 

Sensor Antenna

JTAG

MSP430
Microcontroller
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additional functionality into a Gen2 RFID tag with our block cipher and external sensor. 

This will provide a low cost solution to a Gen2 compliant, environmental sensing, and 

secure RFID tag. Second we will prototype our device on an FPGA. This will create a 

sister device to the WISP, a hardware programmable RFID tag. 

1.3.2 FPGA RFID Sensing Platform 

The idea of a hardware programmable, Gen2 compliant RFID sensing platform 

was first demonstrated in [CT08] and is shown in Fig. 3. FPGA emulation provides two 

major advantages over simulation. The first is proof of compliance with Gen2, as we will 

be using an RFID reader known to be compliant, discussed further in section 5.2. The 

second is a reduction in simulation time. Communication in Gen2 occurs on the order of 

milliseconds, which can lead to long simulation time as we integrate a greater number of 

modules in our design. We will replicate and build upon the work presented in [CT08] by 

introducing a way to secure the sensor data. 

 
Figure 3: From [CT08], FPGA emulation of Gen2 compliant RFID sensing platform. 
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1.4 Thesis Outline 

In this thesis we will begin with an overview of the Gen2 protocol followed by a 

block by block breakdown of each portion of the design. Chapter 3, justifies using a Gen2 

RFID tag for environmental sensing and the security implications. Chapter 4 discusses 

the enhancements required to implement our approach to security. Finally, we will 

explore the validation and emulation aspects of our work including how we were able 

create a proof of concept for our design. 
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CHAPTER 2 

DESIGNING A GEN2 TAG 

2.1 Design Methodology 

 Both the design and validation portions of our project were done in the Verilog 

Hardware Definition Language (HDL) with compilation and simulation being done in the 

Xilinx ISE 9.2.04i environment. As previously mentioned, in a commercially viable 

RFID tag gate count and power consumption are of primary concern. The focus of our 

project is ease of reuse in the HDL code. This will allow our work to serve as a testbench 

for changes and optimizations to Gen2 and security protocols, as well as reducing both 

ramp-up and debug time. To accomplish this goal, implementation was guided by several 

important design rules: 

1. Make the design highly modularized, rather than integrated. 

2. Thoroughly commented code with external references where appropriate. 

3. The manner by which each module is enabled, reset, and completion is 

indicated should remain standard. 

It is our desire that by utilizing said guidelines we will be able to greatly reduce 

the complexity of the design at the cost of size and allow components of the design to be 

replaced with ease. With that being said we have made a reasonable effort to reduce the 

size of our design. Discussed further in section 5.5, we have synthesized our design and 

will report the NAND2 Gate Equivalent (GE) for each portion of the design. 
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2.2 Gen2 Basics 

In this protocol the interrogator (reader) modulates a signal in the UHF frequency 

range (860-960MHz) in order to communicate with a receiver (tag). The tag uses this 

signal not only to receive data, but to power the device via RF energy harvesting. The 

reader receives data from a tag by transmitting a continuous wave while the tag 

modulates the reflection coefficient of its antenna in a process known as backscatter. This 

can be thought of as basically creating an open circuit or short circuit across the antenna 

to generate a 0 or 1. Fig. 4 is an illustration of a basic RFID system. 

 
Figure 4: Basic RFID system diagram adapted from [DD08]. A computer sends commands through the reader 

device to the tag. The tag then responds with stored information accordingly.  

The reader controls several aspects of each communication session such as both 

downlink (R�T) data rate between 50-215 kbps, and uplink (T�R) data rate between 5-

640 kbps. The reader also controls what information the tag backscatters. Tags must 

support a basic set of commands given in Table 1. Tags are also assumed to have some 

form of non-volatile memory such as flash, where they store the Electronic Product Code, 

denoted as EPCID throughout this work, which can be thought of as the ID of the tag, as 

well as other information.  
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Table 1:  From [GEN2] set of commands required by a Gen2 compliant RFID tag. There are also several non-

mandatory commands, as well as opcodes reserved for custom commands to allow for flexibility. 

Command  Opcode  

QueryRep  00 

ACK  01 

Query  1000 

QueryAdjust  1001 

Select  1010 

NAK  11000000 

Req_RN  11000001 

Read  11000010 

Write  11000011 

Kill  11000100 

Lock  11000101 

2.3 Typical Tag Inventory Session 

Fig. 5 depicts a typical reader-tag inventory session, both data flow and in time. 

RN16 is a 16 bit pseudo random number generated by the tag used in access control and 

to confirm that the reader intended to speak to this tag when the reader transmits RN16 

back to the tag. EPCID is the ID of the individual tag. This sort of inventorying session is 

an example of a passive tag used as little more than a wireless barcode. It should also be 

noted that CW stands for continuous wave, which is the unmodulated 900MHz RF 

energy emanated by the reader to power the tag during computation and is reflected 

during backscatter. 
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Figure 5: Typical tag inventory session. a) Data flow representation. b) In time representation. 

2.4 Gen2 Tag Hardware 

Fig. 6 illustrates the basic building blocks of a Gen2 RFID tag. The two primary 

modules of the tag are the analog frontend and digital backend. The frontend is 

responsible for regulating the incoming RF signal to generate VDD for the digital logic, 

generating a clock signal, and demodulating the incoming data. The frontend also 

contains the backscatter transistor used to alter the reflection coefficient of the antenna 

during T�R communication. Though this work will fully concentrate on the portion 

labeled Digital Components & Control Logic, a cursory understanding of the remainder 

of the design is still required for prototyping. 
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Figure 6: The two primary components of a traditional passive RFID tag. Our work will concentrate on the 

design and modification of the digital components and control logic. 

2.5 Basic Digital Backend 

Fig 7. is an expanded view of the components that make up the basic digital 

backend of a Gen2 RFID tag. The basic blocks consist of the incoming data decoder, the 

backscatter clock generator, output data encoder, cyclic redundancy checkers (CRC5/16), 

pseudo random number generator (PRNG), memory controller, and command handler 

finite state machine. Next we will delve into the implementation details for several of 

these components. 

 
Figure 7: Block diagram depiction of the digital backend of Gen2 RFID tag. 
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2.6 PIE Decoder 

Pulse interval encoding (PIE) is the encoding scheme used for R�T 

transmissions. Fig. 8 demonstrates how binary symbols are represented in this encoding 

scheme. 

 
Figure 8: From [EPC08] PIE encoding. Encoding is achieved by varying the amount of time each symbol is high. 

The reason for using this encoding scheme can be explained through 

understanding Fig. 9 from [DD08]. Here we can see that to simplify the decoder, 

amplitude modulation (AM) is used. Recalling that the tag also harvests power from this 

signal, whenever the amplitude of the incoming RF signal is low, the tag is not receiving 

power. Therefore, we must use an encoding scheme in which the incoming RF signal is 

high for the majority of the time. Though in Fig. 9 the low in the 0 and 1 seems to be a 

significant portion of the symbol, in reality this will be a much smaller fraction.  

 
Figure 9: Schematic depiction of reader-to-tag data link adapted from [DD08]. 

In order to decode the data, we sample the incoming demodulated data when the 

data is high. Fig. 10 illustrates the R�T calibration symbol (RTcal) which is transmitted 

01

Amplitude modulation

Modulation depth 90%

Pulse-interval encoding

(PIE)
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at the beginning of each reader command. We sample RTcal and divide this number by 

two resulting in the pivot. For the duration of the current command we interpret any 

symbol shorter (less samples) than the pivot to be a 0 and any symbol larger to be a 1. A 

detailed description of the PIE decoder state machine is given in Fig 11. 

 
Figure 10: From [EPC08] the RTcal symbol. Symbol is transmitted at the beginning of each reader command 

and is used to calibrate the R-->T data link. 

 

Figure 11: PIE Decoder state diagram. The concept is to sample RTcal and divide by 2 to calculate the pivot. 

Each subsequent symbol shorter than the pivot is interpreted as a 0 any longer are interpreted as a 1. 
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Our decoder utilizes an array containing all supported opcodes, and the bit length 

of each command. After receiving a symbol, we compare with the array, and upon 

finding a match, raise the opcode_ready flag. This allows the command handler FSM 

time to perform certain tasks in parallel with the command decoding such as pseudo 

random number generation or retrieving values from memory.  We then use the same 

array to indicate we have received all of the data associated with the command and raise 

the data_ready flag. 

2.7 CRC5 & CRC16 

Included in the Gen2 are 5-bit and 16-bit cyclic redundancy checks, called CRC5 

and CRC16 respectively. Both of these circuits are constructed from a linear feedback 

shift register (LFSR) and are used to safe guard information against bit errors during 

transmission. Schematics for both circuits are given in Fig. 12 from [EPC08]. 

 
Figure 12: From [EPC08] Schematic view of the a) 5 bit CRC and b) 16 bit CRC. 
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CRC5 is only utilized when confirming a Query command was properly received. 

For this reason we were able to modularize the control logic. We used a 22 bit shift 

register which resets the CRC5 if a Query opcode is received and loads the contents of 

the Query command when the PIE decoder data_ready flag is raised and begins to shift in 

the data. If the Query command is properly received based on Appendix F of [EPC08], 

the crc5_valid flag is raised. 

 The CRC16 is used both to confirm certain commands were properly received, 

and to protect transmitted data, making implementation slightly more challenging, but the 

basic operating principles remain the same as the CRC5. We use a larger shift register 

and each time the CRC16 is used, data is loaded into crc16_data_in, crc16_reset is raised, 

and the number of bits to be clocked into the CRC16 is loaded into crc16_count. We then 

shift crc16_data_in by one position and decrement crc16_count until we reach 0. 

Depending on whether we are computing or verifying a CRC16 value we will either raise 

the crc16_valid flag or compare to a fixed value according to Appendix F of [EPC08] and 

raise the crc16_valid flag. 

2.8 Backscatter Encoding 

Gen2 requires that the tag support two data encoding schemes for T�R 

communication, FM0 and Miller. In keeping with design modularity, we designed a 

transmission circuit (tx_fsm) shown in Fig. 13, charged with selecting the correct 

encoding scheme and transmitting the appropriate preamble and data. Inputs to tx_fsm 

are the number of bits to be transmitted, a 2 bit m value for selecting the encoder, and 

trext for selecting the preamble length. A 129-1 multiplexer selects the appropriate bit to 

transmit based on a counter value. The counter is incremented on the negative edge of the 
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blf_clk and data is clocked into the encoders on the following positive blf_clk edge. 

When all bits have been transmitted the tx_complete flag is raised. 

 
Figure 13: Transmission encoder circuit. The input register is preloaded with the data being transmitted to the 

reader. A counter is used to select the appropriate bits. The m value selects the appropriate encoding scheme. 

When the counter reaches the number of bits the tx_complete flag is raised. Trext is used to indicate the length 

of the preamble. 

 

2.8.1 FM0 Encoding 

Fig. 14 from [EPC08] is a waveform of all possible FM0 sequences. The output is 

toggled at the start of each symbol. FM0 encoding requires a phase change on the 

negative edge of the blf_clock when transmitting a 1 and no phase change when 

transmitting a 0. Therefore, the data rate in FM0 encoding is equal to the backscatter link 

frequency. 

 
Figure 14: From [EPC08] FM0 encoding sequences. 
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2.8.2 Miller Encoding 

Miller encoding works in a manner similar to FM0. The difference between a 0 

and 1 is based on 180º phase shift, but with a more complex set of guidelines. To begin 

with, there is what is known as a subcarrier value (m) that determines the number of 

clock cycles required to transmit a single bit of data. Therefore, the data rate is the 

backscatter link frequency/m. A tag is required to support m values of 2, 4, & 8. Fig. 15 

is a representative set of Miller encoded sequences. Also shown in Fig. 15 are the rules 

for when it is appropriate to change phase. This occurs on the boundary between 

consecutive 0’s and on the mth clock edge of every data 1 symbol. 

 
Figure 15: From [EPC08] subset of Miller encoding sequences. 

2.9 Memory 

As mentioned in section 1.1, Gen2 tags must contain some form of non-volatile 

memory used to store information such as the EPCID and access passwords. Section 

6.3.2 of [EPC08] states this memory must be partitioned into 4 banks User, TID, EPC, 

and Reserved. Data is accessed in 16 bit words. For simplicity we chose to simulate 

memory with a set of 2-dimentional register arrays, addressed by the 2 bit mem_bank 

value, and the mem_word byte. We use a bit called write_enable to distinguish between 

memory reads and writes. 
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Figure 16: Memory configuration. For our prototype we chose to emulate non-volatile memory with a set of four 

2-dementional arrays. 

 Because the register array is not actually non-volatile we also included a 

mem_reset input which resets the register arrays to a specific state. The act of resetting 

the memory also serves to hard code information such as the EPCID. It should be noted 

that we did not include any form of access control to prevent reads or writes to and from 

specific memory locations, though such a scheme would be a straightforward extension 

to the current architecture. 
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CHAPTER 3 

SECURE SENSING WITH A GEN2 TAG 

3.1 Environmental Sensing with a Gen2 Tag 

 The combination of a moderate read range of 10-30 ft [DD08], non-volatile 

memory, low cost reader hardware, and power harvesting make Gen2 tags well suited to 

function as the communication frontend for a sensor. This idea is evident in the design of 

the WISP which includes a temperature sensor and accelerometer and could be used for a 

variety of applications [HC07], [DH08], [SC09]. The basic principle being that in the best 

case, the power harvested by the tag could be used to power the sensor. While at the very 

least, the tag could serve as the communication frontend for the sensor, eliminating the 

power required to transmit data and allowing the sensor to last longer if it has a battery or 

harvest less energy from another source such as solar.  

 
Figure 17: RFID tag with sensor block diagram adapted from [FT09], [IPJ08]. Power for the sensor could 

ideally come from the tag's harvesting circuitry, but could also be from a separate source such as a battery or 

solar. With no power drawn from the sensor to transmit the data battery life of the sensor would be extended or 

the sensor would function in less ideal conditions. 

In [CT08] temperature sensor data was incorporated into the EPCID value and 

transmitted over an unsecured channel. We would like to take this a step further and 

provide a level of security by incorporating a novel low power block cipher. In this 

chapter we will justify the need for security, and explain how this was accomplished. 
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3.2 Security Motivations 

 Fig. 18 illustrates an example application in which we would want to protect 

sensor data. We will reference this application throughout this chapter. In this example, 

the bridge has been embedded with several sensors with RFID frontends. If we assume 

that our bridge is located in a remote location, constant monitoring of the tag could be 

considered challenging and expensive. Instead, periodically a vehicle equipped with an 

RFID reader passes over the bridge and collects the sensor data. The vehicle then returns 

to a secure location and downloads the information for later processing.  

 
Figure 18: RFID sensor application illustration. Here we depict a vehicle periodically driving over the bridge to 

retrieve sensor data. This could simplify the infrastructure required to monitor the bridge, though several 

security implications must be considered. 

 This scenario could justify several layers of security. We would not want to reveal 

the sensor data to an untrusted reader because this might allow a malicious party to 

discover and target a weak point in the bridge if it were a mechanical stress sensor. We 

would also like to obscure the data in such a way that even if the sensor data remains the 

same, it will appear to change each time to an untrusted party; thereby stopping an 

adversary from inferring information about the sensor without knowing the actual value. 
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Finally, we would like to provide one way authentication in the sense that the trusted 

reader has a way to verify the origin of the data. 

3.3 Security in Gen2 

 With the primary intended function of Gen2 tags being low cost and high volume 

inventory tracking, security is virtually nonexistent. While the protocol does contain a 16 

bit PRNG, it mainly serves in an access control role, allowing tags to verify the intended 

recipient of reader commands, as well as slotting tags in a response queue. Providing 

security has been the focus of several research papers. In [AM07] an Advanced 

Encryption Standard (AES) block cipher was added with the protocol modified in the 

manner depicted in Fig 19. 

 
Figure 19: From [AM07] standard vs. secure command flow. a) Standard Gen2 command flow. b) Security 

enhanced command flow. K is the secret 128 bit AES key, and Ek() indicates the data is encrypted with AES 

using key k. 

 The security scheme in Fig. 19 suffers from several major drawbacks. The first 

being key distribution. According to [AM07], “We assume that the secret key is securely 

delivered to the reader from the database before the communication starts between the 

reader and the tag.” This immediately raises the question: How does the database know 

which tag it is communicating with before receiving the EPCID of the tag? The second 

drawback to this scheme is the reader must have a constant uplink to the backend 
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database, increasing the difficulty in implementing this scheme. The final drawback is the 

vulnerability to replay attacks. An untrusted reader could read information from the tag 

and replay the data without knowing the secret key. The reader does not have a way to 

validate the origin of the data. 

 [DB06] proposes a security scheme which will serve as the basis of our protocol. 

A tag computes RT = H(KTS, CR) where H() is a cryptographic functions such as a block 

cipher, KTS is a shared secret key stored on the tag and reader (or backend server), and CR 

is a unique challenge sent from the reader to the tag. The tag then replies with its EPCID 

and RT. This process is described in Fig. 20. 

 
Figure 20: Security scheme proposed in [DB06]. CR represents a unique challenge from the reader to the tag. 

KTS is a unique key shared by the reader and tag. H() is a cryptographic function such as a block cipher. 

 This scheme provides several advantages over the previous scheme. Protection 

against replay attacks is provided by the length of CR. Because an adversary does not 

know CR ahead of time, they must store all possible CR and corresponding RT values to 

clone the tag. Authentication is provided in the strength of the function H. With EPCID, 

the reader or backend server can select the appropriate KTS and decrypt RT. If CR is 

recovered, than the origin of the information can be assumed to be the correct tag. The 

only drawback to this scheme is that if CR is static, RT is also static. This could allow an 

untrusted reader to imply information about the contents of the tag by querying the tag 
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with a constant CR. We will build upon this scheme in deriving our protocol to protect 

sensor data. 

3.4 Securing Sensor Data 

 Chapter 4 describes in detail all of the enhancements to the basic digital backend 

we have incorporated into our platform, but in order to properly describe our sensor data 

protection protocol we must assume that our tag contains a sensor and a block cipher. For 

the reasons described in section 4.2, we will be using PRESENT, a novel block cipher 

with an 80 bit key and 64 bit data size. 

3.4.1 Guidelines 

Focusing on our example from Fig. 18, we have come up with a specific set of 

guidelines for our security scheme: 

1. Full backwards compatibility with the Gen2 standard. 

2. Reader does not need an uplink to a backend secret key database or 

decryption mechanism to gather data from the tag. 

3. Defense against replay attacks. 

4. Tag data integrity checking. 

5. Authentication of the origin of the data. 

Expanding on our example we can justify these requirements. First, if we say that 

the bridge is in a remote location, we could assume it is difficult and expensive to 

maintain an uplink to a backend server. To keep the system costs down, we would like to 

use an off-the-shelf reader, meaning it does not support encryption or decryption. This is 

also why we must be fully backwards compatible with the Gen2 protocol. 
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Next, we would like to ensure that the data is secure, verifiable, and that an 

adversary cannot infer the status of the sensor from the ciphertext. In the bridge analogy 

we would not like to tell an adversary what the status of any one sensor is as it may 

divulge weaknesses. We would like to confirm what point on the bridge the data came 

from to properly direct maintenance. Lastly, if a sensor normally emits a static value until 

something is wrong, we would not like an adversary to infer what the status of the sensor 

is just by seeing that the ciphertext has changed. 

3.4.2 Adversary 

 As with any security protocol, a detailed description of our threat model and 

adversary are required. In our design we assumed the following: 

1. The adversary is fully aware of all aspects of our protocol. 

2. The adversary can request the data from the tag an unlimited number of 

times. 

3. The adversary can change any data being transmitted between the reader 

and tag. 

4. Each tag contains an 80 bit stored secret symmetric key (ki) that our 

adversary does not know. 

3.4.3 Security Protocol 

Fig. 21 & 22 depict the manner by which we propose to transfer encrypted data 

from the tag to the reader. Data collection is separated into two distinct sections. In the 

first dubbed online, the reader collects encrypted data and ID pairs from the tags. In the 

second offline portion, the reader returns to a secure location to download the data to a 

backend server and perform the security checks. 
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Fig. 21 is a depiction of the Reader-Tag online portion. The start of this protocol 

exactly matches the original Gen2 protocol. In our extension, once the EPCID has been 

received by the reader, the reader emits a “Data Request” command and an 80 bit true 

random number (TRN80). This number must be 80 bits to match the key size of the block 

cipher we are using. At this point the tag will XOR TRN80 with the stored symmetric key 

(ki), concatenate a 40 bit binary counter value (CV40) with the 24 bits of sensor data 

(D24), and encrypt it using the result of the 80 bit XOR operation. 

 
Figure 21: Online portion of secure data transfer. a) Standard Gen2 protocol for transmitting the EPCID of the 

tag b) Our security extension which begins with the same set of commands. After EPCID has been transferred, 

an 80 bit true random number (TRN80) is sent to the tag. The tag then computes an XOR of TRN80 and the 

stored secret key k. The result of the XOR is used as the key to encrypt 24 bits of sensor data (D24) and a 40 bit 

counter value (CV40). 
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Figure 22: Offline tag data upload and integrity check. The communication between the reader and server is 

assumed to be over a secure channel. Using the previous TRN, the tag ID, and counter value, the server is able to 

decrypt the message and ensure that there were no transmission errors. This is the 2nd step in our two part 

secure data transfer scheme. 

Fig. 22 depicts the second portion of our scheme, the offline data download. After 

all tags have been queried, the reader returns back to a secure location and uploads the 

tag information to the symmetric key database. Using the EPCID the server is able to 

retrieve the appropriate shared symmetric key. Then the server can perform an XOR 

between the key and TRN80 and decrypt the ciphertext C. The server can than determine 

the validity of C by checking if the decrypted version of CV40 matches the received 

version. The reader then receives the next TRN80 from the server. This removes the need 

for the reader to carry a TRNG. The reader will need a separate, unique TRN80 for each 

tag it plans to query. 
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3.5 Security Analysis 

3.5.1 Security Basis 

The security of the protocol described above is derived from what is known as 

unilateral authentication, using random numbers from [AM01]. This scheme is shown by 

Eq. 1, 2: 

( )*,:

:

BrEBA

rBA

BK

B

→

←

 

Here A is the tag, B is the reader, rB is a true random number, B* is the data 

requested by the reader, and EK() represents a cryptographic function such as a block 

cipher encrypted with key K. B decrypts the message sent by A and checks that the 

random number is correct. Part of the novelty of our scheme is that the block cipher is in 

a modified version of counter mode. Fig. 23 depicts the standard version of block cipher 

counter mode versus the modified version. 

 
Figure 23: a) Standard block cipher counter mode. The number used only once (nonce) represents a true 

random number value. b) Modified version of counter mode in which the counter and plaintext are 

concatenated and encrypted with a key composed of an XOR of the secret key and the nonce. 

The reason for this modification is the key space of PRESENT (80 bits) is greater 

than the ciphertext space (64 bits) and provides greater protection against replay attacks. 

This version further justified given the size of the plaintext we are protecting. Sensor data 

is on the order of only several bits and here we can use the counter value as padding for 

the plaintext. We will delve further into the implications of our design below. 
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3.5.2 CV40 

Table 2: Bit length for the subset of reader commands required in our security protocol. 

Reader Commands Data Bits 

Query 22 

ACK 18 

Data_Req 112 

 

Table 3: Bit length for data transmitted by the tag in our security protocol. We are assuming FM0 encoding and 

a short preamble. 

Tag Replies Data Bits End of Signaling Bits Preamble Bits 

RN16 16 1 6 

EPCID 128 1 6 

Sensor Data 120 1 6 

 

The impact of the 40 bit counter value is twofold. First it is used to help ensure 

the adversary cannot infer information about our data by passively observing the 

ciphertext. Because C is comprised of CV40 || D24, should D24 and TRN80 remain the 

same, the 40 bits of CV40 will ensure that our data cycles at least 240 times before 

repeating. To establish how long this would take we must first calculate the time required 

for each round of data transfer. Tables 2 and 3 contain the number of bits required for 

each reader command and tag reply respectively assuming that a CRC16 value is 

transmitted with C and CV40 to protect against transmission errors.  

Section 6.3.1.2.4 of Gen2 states 6.25µs and 9.375µs are the shortest possible 0 

and 1 PIE values supported respectively. If we assume an equal distribution of 0s and 1s, 

FM0 encoding, and 640kHz T�R we can calculate the minimum time required for each 

round. Finally, we also assume that the Data_Req command and sensor data transfer are 

repeated 240 – 1 times because once EPCID has been transferred data can be requested an 

infinite number of times. Table 4 summarizes these calculations.  
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Table 4: Data transfer timing calculation summary. 

Parameter Value Unit 

Data1 9.375 µs 

Data0 6.25 µs 

RTcal 15.625 µs 

TRcal 33.3 µs 

BLF 640 kHz 

      

Reader Subtotal 1286.425 µs 

Tag Subtotal 445.3125 µs 

Total (Single Exchange) 1.7317375 ms 

      

Total (Repeated Exchanges) 1.18026E+15 µs 

  37.42570437 years 

 

Table 4 shows that assuming both the fastest transmit and receive values allowed 

by the Gen2 protocol our adversary would need approximately 37.5 years to transmit the 

data required to view one data cycle, a sufficiently long time for our application. This 

number could increase further if the bit length of the counter value is increased. 

The second quality of CV40 has to do with verifying the integrity of the data 

received by the reader. When C is decrypted offline, if CV40 does not match the expected 

value then it is clear that the data portion is not valid. As we stated previously, CRC16 is 

used to protect against transmission errors which could cause the same result. 

3.5.3 TRN80 

The motivation behind the 80 bit random number is protection against replay 

attacks. Without this, an adversary could collect data from the tag, and while they may 

not be able to decrypt the data, an adversary could replay this data to the reader. The 

reader could still properly decrypt the information, but since a Gen2 tag has no real time 

clock or way to ensure data freshness, the data would seem valid. By including this 

number, the adversary would need to store 280 different TRN80 values as he would not 
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know what number will serve as the challenge from the trusted reader. He would also 

need 264 different combinations of C, as our block cipher has an output of 64 bits and 240 

different CV40 values so that he could properly reply with old data. It is critical TRN80 be 

a true random number as opposed to a pseudo random number to avoid the possibility of 

the adversary guessing what number will be used next, forcing him to store all possible 

combinations. This would result in a total data storage of 80*280 + 264*64 + 240*40 bits = 

1.2*1013 terabytes of information per tag, an unfeasibly large amount for our application. 

3.6 Security Protocol Proof of Concept 

The sensor data security scheme outlined above fits within the framework Gen2 

by making use of the opcode space reserved for custom commands to transmit our 

Data_Req command and random number. However, with the limited RFID reader 

software available we needed a way to practically emulate our protocol using only basic 

Gen2 commands. Fig. 24 illustrates the difference between our actual protocol and the 

proof of concept. In the latter, we use the 16 bit password parameter of the access 

command to construct the TRN80 value. The 32 bit access password is delivered in two 

16 bit packets by consecutive access commands. In our proof of concept we string 

together these packets to form the 80 bit value required. Though it is clear that this would 

severely reduce the security of our scheme if deployed in this manner, it serves as a 

sufficient proof of concept to demonstrate our protocol.  
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Figure 24: Sensor data security scheme POC command flow. a) Actual sensor data security scheme. b) Proof of 

concept of sensor data security scheme. Here we have utilized only basic Gen2 commands. By concatenating and 

reusing the 16 bit access passwords (AP1 & AP2) we can mimic our 80 bit true random number. 
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CHAPTER 4 

ENHANCING THE DIGITAL BACKEND 

4.1 Enhancement Overview 

Fig. 25 is a block diagram depiction of our enhanced Gen2 digital backend. Our 

design leverages work on clocking and pseudo random number generation from [QL09] 

and [PP07] respectively. We will also introduce a novel block cipher known as 

PRESENT [AB07], and the circuitry required to communicate with the temperature 

sensor. Justification and implementation details for each new block can be found 

throughout this chapter. 

 
Figure 25: Block diagram depiction of our enhanced Gen2 digital backend. 
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4.2 PRESENT 

The security protocol outlined in section 3.4.3 hinges upon the availability of a 

symmetric block cipher. PRESENT is a 64 bit block cipher with an 80 bit key, designed 

for low power, low gate count applications [AB07]. In order to evaluate their design, the 

creators of PRESENT normalized several area optimized designs to the NAND2 gate of 

the technology used, a technique known as gate equivalence (GE). The authors claim an 

approximate GE of 1.5k in their implementation of PRESENT. The comparison between 

PRESENT and other area optimized block ciphers is illustrated in Fig. 26. 

 
Figure 26: From [AB07] a gate equivalence comparison of several area optimized block ciphers. With area a 

primary design constraint, PRESENT is an excellent choice for our RFID sensor platform. 

 

4.2.1 PRESENT Algorithm 

The basic PRESENT algorithm is given in Fig. 27 from [AB07]. There are 32 

rounds with each round consisting of a 64 bit round key XOR, sbox, and permutation 

layer. After each round, the next round key is generated by the key scheduler and is 

represented by the update box in Fig. 27. The sbox is the direct 4-4 bit substitution in 

Table 5. One of the powerful aspects of PRESENT is the simplistic manner by which the 

PRESENT sbox can be implemented in hardware using only 10’s of gates, which 
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compares favorably to AES 8-8 bit sbox that requires approximately 200 gates [DC05]. 

The permutation layer reallocates 62 of the 64 bits to different bit positions dictated by 

Table. 6. Naturally, this layer does not require any gates, only specific wire routing, and 

does not contribute to the GE of PRESENT. 

 

 
Figure 27: From [AB07] PRESENT algorithm block diagram. 

 

 

Table 5: From [AB07] PRESENT sbox layer substitution mapping. 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F 

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2 
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Table 6: From [AB07] PRESENT permutation layer 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51 

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55 

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59 

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63 

 

4.2.2 PRESENT Key Scheduler 

Before each round of sbox and permutation, an XOR is done with the 64 most 

significant bits of the key, which is then updated with key scheduling algorithm. This is 

done a total of 32 times. The key scheduling algorithm is given in Alg. 2, which states 

that the key is rotated by 61 positions, the 4 most significant bits are put through the 

PRESENT sbox, and then an XOR of bits 19-15 and the round counter is done.  

 

  

 

4.3 LAMED 

LAMED is a pseudo random number generator (PRNG) designed by [PP07] to 

conform to the Gen2 requirements of: 

1. Probability of a single RN16: The probability that any RN16 drawn from 

the RNG has value RN16=j for any j, shall be bounded by Eq. 3. 
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Algorithm 1: PRESENT key scheduling algorithm 

[k79k78…k1k0] = [k18k17…k20k19] 

[k79k78k77k76] = sbox[k79k78k77k76] 

[k19k18k17k16k15] = [k19k18k17k16k15] ⊕ round counter 

(3) 
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2. Probability of simultaneously identical sequences: For a tag population of 

up to 10,000 tags, the probability that any of two or more tags 

simultaneously generate the same sequence of RN16s shall be less than 

0.1%, regardless of when the tags are energized. 

3. Probability of predicting an RN16: An RN16 drawn from a tag's RNG 10 

ms after the end of Tr, shall not be predictable with a probability greater 

than 0.025% if the outcomes of prior draws from the RNG, performed 

under identical conditions, are known. 

The LAMED algorithm given in Alg. 2 is constructed from 32-bit XORs, 32-bit 

ADDs and variable length barrel shift operations. The simplicity of these operations 

should keep the design power requirements relatively low, though no direct power 

numbers are reported by the authors. 

 

 

aux3 = barrelshift(aux3, 2) 

aux3 = aux3 ⊕ aux1 

aux3 = barrelshift(aux3, 3) 

aux3 = aux3 + a1 

aux3 = barrelshift(aux3, 2) 

aux3 = aux3 + aux1 

aux3 = barrelshift(aux3, 4) 

aux3 = aux3 ⊕ a1 

aux3 = barrelshift(aux3, 1) 

aux3 = aux3 + aux2 

aux3 = barrelshift(aux3, 2) 

out = aux1 ⊕ aux3 

If n is odd, a0 = a1 + iv & a1 = out ⊕ s 

If n is even, a0 = a1 ⊕ iv & a1 = out + s 

aux1 = a0 + a1 

aux2 = a0 ⊕ a1 

aux3 = barrelshift(aux1, 5) 

aux3 = aux3 + aux2 

aux3 = barrelshift(aux3,3) 

aux3 = aux3 ⊕ aux1 

aux3 = barrelshift(aux3, 4) 

aux3 = a1 + aux3 

aux3 = barrelshift(aux3, 2) 

aux3 = aux3 + aux1 

Algorithm 2: LAMED PRNG Algorithm. a0 is a stored unique key and a1 is an initial vector. Aux1, 2, & 3 are 

temporary registers used in the algorithm. All vectors are 32 bits in length. 
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 Two 32 bit vectors, a0 and a1, are operated on to generate a 32 bit pseudo random 

number (PRN). An XOR of the 16 MSB and 16 LSB of the 32 bit output creates the 16 

bit PRN. These vectors are then updated for each new PRN generation round according 

to Eq. 4, 5 where the initial values for a0 and a1 are a stored unique secret key, s, and an 

initial vector, IV, respectively. From these equations we can see that at the end of each 

round we must store the output and a1 value from the previous round to prevent the 

PRNG from initializing to the same value each time. We have chosen to store these 

values in the User memory bank words 0-3.  
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The authors put their design through a battery of statistical tests to prove that it 

does in fact conform to the randomness requirements of Gen2. They also claim that their 

implementation is approximately 1.5k gates. This is an acceptably low gate count when 

compared to other similar LFSR based stream ciphers such as Trivium and Grain which 

require an extra 90% and 34% overhead compared to LAMED [PP07].  

4.4 Dual Clocking Scheme 

The authors of [QL09] make a compelling argument for the use of a separate 

clock to drive the PIE decoder and backscatter link frequency divider due to both lower 

bit error rate and power consumption of the tag. The standard clock frequency quoted for 

driving the digital logic in a Gen2 tag is 1.28MHz [AN07]. Looking at Fig. 28, we can 

see that certain symbols will have an error of ± 1 sample.  

(4) 

 

(5) 
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Figure 28: From [QL09] PIE sampling error. PIE decoding requires sampling the incoming signal and counting 

the number of samples to interpret the data. Depending on when the data transitions, a sampling error of +/- 1 

sample is possible. 
 

The authors are able to show that a single 1.28MHz clock is insufficient for two 

reasons. The first is that because of this sampling error data coming from the reader could 

be misinterpreted. The second is that by powering down the 2nd clock when the tag is 

neither receiving nor transmitting data, that a power savings of between 5-11% is 

possible. For these reasons we have designed our platform with two clock domains. In 

implementation we were only able to acquire a 10.24MHz clock; therefore we used two 

simple clock dividers, which we do not consider part of our design, to generate both 

clocks and dedicated one FPGA I/O pin to resetting the clock dividers. 

4.5 Temperature Sensor 

Several factors were considered in the choice of our temperature sensor. In order 

for our platform to realistically demonstrate its use in an environmental sensing capacity, 

we needed a low speed sensor with minimal external wires to keep the load capacitance, 

and therefore power, to a minimum. Also, early in the design process we were not sure of 
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the I/O voltage requirements and were therefore looking for a sensor that would work 

over a range of voltages. For these reasons we selected the DS1620 from Maxim 

Integrated Products [DS1620].  

This sensor is rated to work over a range of 2.7-5V at speeds below 1.75MHz. 

The sensor has 9 bits of precision and is accurate to ½ ºC, which is sufficient for our 

purposes. Data is transferred over a 3 wire communication bus using a protocol similar to 

the Serial Peripheral Interface protocol shown in Fig 29. Command sessions are initiated 

by driving the rst_n signal high while the clk_conv signal is high. Data on the dq pin is 

then clocked on the rising edge of each consecutive clk_conv signal LSB first. Fig. 29 

represents a simulation of the commands 8’hEE and 8’hAA being clocked into the 

sensor, followed by 9’h1FF being received. 

 
Figure 29: Simulated output of the temperature sensor FSM. The controller transmits 8’hEE and 8’hAA to 

prepare the sensor and 9’hFF represents the 9 bit temperature reading. All data is clocked a the rising edge of 

clk_conv. 

We designed an FSM which queries the sensor upon power up or reset and then 

saves the sensor data to memory bank RES word 4. The sensor FSM then signals 

completion by raising the temp_ready flag. This allows our sensor to be replaced with 

minimal changes, keeping in line with our goal of reuse and modularity. 
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CHAPTER 5 

DESIGN EMULATION & VALIDATION 

5.1 Our Platform 

This work combines a Xilinx Spartan 3a FPGA board, WISP RFID tag, and 

temperature sensor to create our hardware programmable RFID platform illustrated in 

Fig. 30. The idea is to use a portion of the analog circuitry from the WISP as a means for 

the FPGA to transmit data to and receive data from the RFID reader. To do this we will 

disable the MSP430 microcontroller, sample the receive pin, and toggle the transmit pin 

from the FPGA board. Unlike a standard RFID tag, power and clock will be supplied by 

the FPGA board. A photograph of our experimental platform is found in Fig. 31. 

 
Figure 30: FPGA RFID sensing platform block diagram. 

A schematic and photograph of the circuitry required to properly interface the 

WISP and Spartan FPGA is given in Fig. 32. Because the WISP I/O operates at 1.8V and 

FPGA operates at 3.3V, voltage dividers in the form of potentiometers were used on the 

transmit and receive enable pins. The WISP also inverts the demodulated PIE encoded 

data from the reader so the inverter not only reverses this operation, but shifts the data 

into the 3.3V domain. 
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Figure 31: Photograph of our FPGA RFID sensing platform. Commands from the RFID reader are 

demodulated with the WISP circuitry and sampled by the FPGA. Commands are transmitted to the reader by 

toggling the WISP transmit I/O pin from the FPGA. 
 

 
Figure 32: Circuitry required to integrate the FPGA with the WISP and sensor. a) schematic. b) photograph. 
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5.2 Validation 

5.2.1 Validation Overview 

One significant challenge facing our design is verifying the system works to 

specification. For most of the smaller components, Verilog simulation testbenches should 

be sufficient. As the sub blocks are integrated into larger and more complex modules, 

constructing meaningful testbenches becomes more challenging and simulation time 

increases accordingly. On top of this, in order to verify that our entire design is compliant 

with the Gen2 standard in any meaningful manner, we must be able to test it with devices 

known to be compliant. To solve this challenge we will use a 3rd party RFID reader, 

which is known to be compliant, to test several aspects of our design. 

 The case can be made that the most critical component to the success of this thesis 

is the manner by which we validate our design. This is the primary function of our 

emulation platform. Using a 3rd party RFID reader known to be Gen2 compliant allows 

us a high level of confidence in the performance of our design. We were also able to use 

a Tektronix DPO7104 Digital Phosphor Oscilloscope to probe our design and capture I/O 

traces. 

During debug we were only capable of probing four signals with the oscilloscope, 

leaving us partially blind to much of the inner state of the design during emulation. To 

circumvent this issue, we were able to design a perl script which was used to translate the 

I/O recorded by the scope into a Verilog testbench that we could then simulate in ISE. 

The input to this script is one channel of oscilloscope data in Waveform Text File format. 

The output is a pin name and verilog initial statement timing format. This process, 

illustrated in Fig. 33, allowed us to conduct functional simulations with actual stimuli 
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provided by the RFID reader and compare expected against actual results, greatly 

enhancing our understanding of the protocol as well as reducing debug time. We have 

included this script in Appendix M, though it is in a format which requires the file and 

pin name to be specified in the script before execution. 

5.2.2 RFID Reader 

Through a joint effort with Professor Kevin Fu and the Computer Science 

department, we were able to verify our design with an Impinj Speedway Gen2 RFID 

reader. Using the Ethernet/web software interface shown in Fig. 34, we were able to 

verify of our design under varying conditions such as Tari, backscatter link frequency, 

backscatter encoding, and PIE symbol ratio of the length of a Data1 symbol to a Data0 

symbol. Table 7, lists the range of parameters we were able to verify. 

Table 7: Range of Gen2 parameters verified. 

Reader Commands Tari (us) BLF (T-->R) (kHz) Backscatter Encoding PIE Ratio 

Query 7.14 160 FM0 1.5:1 

QueryRep 12.5 256 Miller4 2.0:1 

QueryAdjust 25 640 Miller8   

Select         

Access         

ReqRN         

ACK         

 

5.2.3 Validation Milestones 

During the planning of our project we were able to identify five major validation 

milestones. Each of these checkpoints involved integrating a greater number of modules 

as well as new I/O between the FPGA and reader. These milestones are listed in Table 8. 
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Figure 33: Illustration of I/O capture to verilog testbench. 
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Figure 34: RFID reader software interface used in design validation. 

 

Table 8: Validation milestones. 

Milestone Description 
New Reader 

Commands 
New Components Tested 

M1 
Generation and transmission of RN16 

with Reader ACK 

Query, 
QueryRep, 

QueryAdjust, 
ACK 

PIE Decoder, CRC5, PRNG, 
FM0 & Miller Encoders, BLF 

Divider 

M2 Transmission of EPCID Select CRC16 

M3 Memory Reads ReqRN, Read Memory Banks & Controller 

M4 Sensor data transmission - Sensor FSM 

M5 Encrypted sensor data transmission Access PRESENT 

5.3 Supported Gen2 Structure 

 Fig. 35 illustrates the extent of the Gen2 structure supported in our design. The 

only state not fully or partially supported is Killed in which the tag is fully disabled and 

does not respond to reader commands. Partial support for the Open and Secured states 

stems from the fact that we do not support the Kill or Lock commands which are required 

for full compliance. These commands restrict or disable tag response based on plaintext 

passwords and were not necessary for this project. Implementation of these commands 

using encryption would be an excellent example of future work using our platform. 
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Figure 35: Supported Gen2 FSM structure. 

5.4 PRESENT Validation & Decryption 

 PRESENT is a relatively new and unknown cipher when compared to other well 

known ciphers such as AES or DES. Because of this, there is little literature available for 

reference when designing a PRESENT engine. In order to properly insure our design 

meets the PRESENT specifications we performed a round by round manual functional 
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validation using test vectors found at [AP10]. We used this same web address to validate 

the decryption engine found in Appendix L. The decryption engine was not intended to 

be synthesized and was only used in decrypting actual sensor data. 

5.5 Synthesis Results & Discussion 

 Although modularity and ease of reuse were our primary goals while coding this 

work, we wanted to make sure that our design was at least on the same order of 

magnitude of the 5k GE expected in a Gen2 tag [PP09]. Therefore, we synthesized our 

design using Design Compiler A-2007.I2-SP4 from Synopsys and the UMC 65nm 

standard cell library. During compilation we used Compile Ultra and specified all clocks 

appropriately for each module. Fig. 36, breaks down the synthesis results. 

 
Figure 36: Gate equivalence synthesis results of our design. 
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Figure 37: Thesis verilog lines of code breakdown. 

From Fig. 36, we can show our design is approximately 14.7k GE without 

PRESENT or the Temperature Sensor FSM and 16.8k total. While this is approximately 

3x the size of a Gen2 tag, we are on the same order of magnitude. Some of the extra logic 

can be attributed to the control logic needed to manage PRESENT and the sensor on top 

of the cipher and FSM itself, as well as redundant registers which were the result of the 

modularity built into the design. We believe that with significant effort put into 

optimizing the control logic and more tightly integrating the PIE decoder, the design 

could reach below the 10k GE mark. 

Another indicator of where optimization effort should be placed is in the code size 

of the each module in the design. This is captured in Fig. 37, where, as expected, we can 

see a near 1 to 1 correlation between the code size and the synthesized area. The code 
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size reported does not include comments or white space. All verilog code used in this 

thesis can be found in Appendices A-K. 

5.6 Video Demonstration 

 We constructed a video demonstration of our platform performing in three distinct 

modes of operation. First we demonstrate basic ID queries with several different 

parameters. Next, we demonstrate unencrypted sensor data retrieval while we warm up 

the sensor to show the value increasing. Finally, we demonstrate encrypted sensor data 

retrieval and decryption. The timeline is as follows: 

1. Introduction (42s) 

2. ID query with multiple settings (1m 52s) 

3. Unsecure sensor data query (1m 2s) 

4. Encrypted sensor data query and decryption (1m 34s)  
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CHAPTER 6 

CONCLUSIONS 

6.1 Timeline 

 Table 9 outlines the timetable for this work. Initial ideas and specifications began 

in the summer of 2008 with most of the basic blocks simulated by summer of 2009. Early 

in 2010 we demonstrated a proof of concept for communication between the FPGA and 

RFID reader. By summer of 2010 the initial version of the code was complete and by the 

end of July the project and documentation were completed.  

Table 9: Thesis project timeline. 

Task   Completion   

Initial project specs   Summer 2008   

Ramp up on Gen2 protocol  Fall 2008   

Ramp up on security and cryptography   Spring 2009 

Verilog coding and synthesis of basic blocks  Summer 2009   

Design security scheme February 25, 2010 

POC FPGA reader communication  March 2, 2010 

Verilog coding and synthesis of basic Gen2 control logic  April 15, 2010 

Verification and debug of basic Gen2 protocol with reader  May 15, 2010 

Integrate temperature sensor  June 1, 2010 

Integrate encryption/security protocol  June 15, 2010 

Defend Thesis  July 6 & 7, 2010  

Complete thesis document & code organization  August 10, 2010 

6.2 Our Contributions 

In this thesis, we were able to construct a platform capable of providing solutions 

and insight in the areas of RFID, security, and environmental sensing. The idea of low 

power, low cost, and secure environmental sensing is not in itself novel, but we were able 

to conceive a manner by which this could be accomplished through modifications to an 

existing solution to low power, low cost wireless identification. This work provides 
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highly detailed information about the design, simulation, and prototyping such a 

platform. 

 Through our work, we have demonstrated the ability to decipher the information 

contained in the EPC Class 1 Generation 2 protocol and provide the basic components 

required to construct the digital backend of a modern RFID tag. We incorporated the 

work of several other researchers involving multiple clock domains and pseudo random 

number generation. We were also able to demonstrate two specific extensions to the basic 

components, a novel low power block cipher and environmental sensing both of which 

were added within the constraints of the current Gen2 protocol.  

 We were also able to prototype and validate the majority of our design with off-

the-shelf 3rd party components to ensure compliance. We recognized that in undertaking 

such a large design from the ground up, detailed analysis would be required throughout 

the design process. We were able to devise a scheme to translate communications 

between the reader and tag into Verilog testbenches. This not only provided more in 

depth analysis, but reduced debug time and allowed us a higher degree of confidence as 

the complexity of the work increased. 

6.3 Future Work 

 It is our belief that this work could serve as a stepping stone to several future 

works. A natural extension would involve ASIC synthesis (including layout) of the HDL 

code, which would allow studies in several areas including low power ASIC design, 

subthreshold RFID tags, and the effects of scaling on RFID tags. The modularity we 

intentionally built into our design will also allow for studies involving other ciphers such 

as AES, additional sensors, and optimizations to specific portions of the design.  
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 Our work will also allow more vigorous studies into the future of the Gen2 

protocol, most specifically into the addition of security, but one could imagine work 

studying the effects of different encoding schemes, pseudo random number generators, 

and memory. It could also be used by analog designers to study best practices in RFID 

analog and RF frontend design. With our work, future research can perform in depth 

timing, power, and area analysis in any of the aforementioned areas. 

 A long term application of our work could be inclusion into a hybrid RFID device 

involving an FPGA and microcontroller where the protocol or cryptographic portions 

could be handled by the FPGA and computation or environmental sensing could be 

performed by the microcontroller. As technology scales, perhaps such a device could 

even be passively powered. Such a project would involve analog designers, RTL 

designers, and computer scientists. This work would serve as an excellent foundation for 

such a project. 
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APPENDIX A 

PRESENT ENCRYPTION VERILOG 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    10:39:07 06/04/2010 
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    present80 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: PRESENT block cipher with an 80 bit key size. Designed 
// according to publication PRESENT: An Ultra-Lightweight Block Cipher (CHES 07) 
////////////////////////////////////////////////////////////////////////////////// 
 
module present80(clk, enable, reset, plaintext, key, ciphertext, complete); 
//Note: This circuit is only capable of performing the PRESENT encryption, not decryption 
input clk; 
input enable; 
input reset; 
input [63:0] plaintext;//Input text to cipher 
input [79:0] key;//80 bit unique secret key 
output [63:0] ciphertext;//Ciphertext output of cipher 
output reg complete;//Flag used to indicate encryption/decryption is complete 
reg [79:0] roundkey_in;//Round key before update 
wire[79:0] roundkey_out;//Round key after update 
wire [63:0] key_text_xor;//XOR of roundkey and round output 
wire [63:0] sbox_out;//Result of sbox layer 
wire [63:0] permute;//Result of permutation layer 
reg [4:0] roundcounter;//Important: For this to work, must be non-saturating counter 
reg [63:0] temp;//Used to store intermidiate round values 
always@ (posedge clk) begin 
if (reset) begin 
roundkey_in  <= key; 
temp   <= plaintext; 
roundcounter  <= 1; 
complete <= 0; 
end 
else if (enable) begin 
case (roundcounter) 
default: begin 
roundkey_in  <= roundkey_out; 
roundcounter  <= roundcounter + 1; 
temp     <= permute; 
end 
0: begin 
complete   <= 1; 
end 
endcase 
end 
end 
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keyscheduler k0(.enable(enable), .key_in(roundkey_in), .roundkey(roundkey_out), 
.roundcounter(roundcounter)); 
//sbox layer 
sbox s0(key_text_xor[63:60], sbox_out[63:60]); 
sbox s1(key_text_xor[59:56], sbox_out[59:56]); 
sbox s2(key_text_xor[55:52], sbox_out[55:52]); 
sbox s3(key_text_xor[51:48], sbox_out[51:48]); 
sbox s4(key_text_xor[47:44], sbox_out[47:44]);  
sbox s5(key_text_xor[43:40], sbox_out[43:40]); 
sbox s6(key_text_xor[39:36], sbox_out[39:36]); 
sbox s7(key_text_xor[35:32], sbox_out[35:32]); 
sbox s8(key_text_xor[31:28], sbox_out[31:28]); 
sbox s9(key_text_xor[27:24], sbox_out[27:24]); 
sbox s10(key_text_xor[23:20], sbox_out[23:20]); 
sbox s11(key_text_xor[19:16], sbox_out[19:16]); 
sbox s12(key_text_xor[15:12], sbox_out[15:12]); 
sbox s13(key_text_xor[11:08], sbox_out[11:08]); 
sbox s14(key_text_xor[07:04], sbox_out[07:04]); 
sbox s15(key_text_xor[03:00], sbox_out[03:00]); 
//permutation layer 
assign permute[0] = sbox_out[0]; 
assign permute[1] = sbox_out[4]; 
assign permute[2] = sbox_out[8]; 
assign permute[3] = sbox_out[12]; 
assign permute[4] = sbox_out[16]; 
assign permute[5] = sbox_out[20]; 
assign permute[6] = sbox_out[24]; 
assign permute[7] = sbox_out[28]; 
assign permute[8] = sbox_out[32]; 
assign permute[9] = sbox_out[36]; 
assign permute[10] = sbox_out[40]; 
assign permute[11] = sbox_out[44]; 
assign permute[12] = sbox_out[48]; 
assign permute[13] = sbox_out[52]; 
assign permute[14] = sbox_out[56]; 
assign permute[15] = sbox_out[60]; 
assign permute[16] = sbox_out[1]; 
assign permute[17] = sbox_out[5]; 
assign permute[18] = sbox_out[9]; 
assign permute[19] = sbox_out[13]; 
assign permute[20] = sbox_out[17]; 
assign permute[21] = sbox_out[21]; 
assign permute[22] = sbox_out[25]; 
assign permute[23] = sbox_out[29]; 
assign permute[24] = sbox_out[33]; 
assign permute[25] = sbox_out[37]; 
assign permute[26] = sbox_out[41]; 
assign permute[27] = sbox_out[45]; 
assign permute[28] = sbox_out[49]; 
assign permute[29] = sbox_out[53]; 
assign permute[30] = sbox_out[57]; 
assign permute[31] = sbox_out[61]; 
assign permute[32] = sbox_out[2]; 
assign permute[33] = sbox_out[6]; 
assign permute[34] = sbox_out[10]; 
assign permute[35] = sbox_out[14]; 
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assign permute[36] = sbox_out[18]; 
assign permute[37] = sbox_out[22]; 
assign permute[38] = sbox_out[26]; 
assign permute[39] = sbox_out[30]; 
assign permute[40] = sbox_out[34]; 
assign permute[41] = sbox_out[38]; 
assign permute[42] = sbox_out[42]; 
assign permute[43] = sbox_out[46]; 
assign permute[44] = sbox_out[50]; 
assign permute[45] = sbox_out[54]; 
assign permute[46] = sbox_out[58]; 
assign permute[47] = sbox_out[62]; 
assign permute[48] = sbox_out[3]; 
assign permute[49] = sbox_out[7]; 
assign permute[50] = sbox_out[11]; 
assign permute[51] = sbox_out[15]; 
assign permute[52] = sbox_out[19]; 
assign permute[53] = sbox_out[23]; 
assign permute[54] = sbox_out[27]; 
assign permute[55] = sbox_out[31]; 
assign permute[56] = sbox_out[35]; 
assign permute[57] = sbox_out[39]; 
assign permute[58] = sbox_out[43]; 
assign permute[59] = sbox_out[47]; 
assign permute[60] = sbox_out[51]; 
assign permute[61] = sbox_out[55]; 
assign permute[62] = sbox_out[59]; 
assign permute[63] = sbox_out[63]; 
assign key_text_xor = roundkey_in[79:16] ^ temp; 
assign ciphertext = key_text_xor; 
endmodule 
 
module keyscheduler(enable, key_in, roundkey, roundcounter); 
//This is the key scheduling circuit for PRESENT80 
//Output is the round key used at the start of each PRESENT round 
input enable; 
input [79:0] key_in;//Unique key 
input [4:0] roundcounter; 
//bits [79:16] of key_out are the actual round keys 
output [79:0] roundkey; 
wire [79:0] shiftout, nextkey; 
//Sbox 4 MSB of shifted data 
sbox keysbox(shiftout[79:76], nextkey[79:76]); 
//perform the 18 bit barrel shift operation 
assign shiftout[79:0] = {key_in[18:0], key_in[79:19]}; 
//XOR bits 15-19 with round counter 
assign nextkey[19] = shiftout[19] ^ roundcounter[4]; 
assign nextkey[18] = shiftout[18] ^ roundcounter[3]; 
assign nextkey[17] = shiftout[17] ^ roundcounter[2]; 
assign nextkey[16] = shiftout[16] ^ roundcounter[1]; 
assign nextkey[15] = shiftout[15] ^ roundcounter[0]; 
assign nextkey[14:0] = shiftout[14:0]; 
assign nextkey[75:20] = shiftout[75:20]; 
assign roundkey = (enable) ? nextkey : 0; 
endmodule 
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module sbox(sbox_in, sbox_out); 
// 4 bit to 4 bit substitution box used in the PRESENT algorithm and key scheduler 
input [3:0] sbox_in; 
output [3:0] sbox_out; 
wire in0, in1, in2, in3; 
wire out0, out1, out2, out3; 
assign in0 = sbox_in[3]; 
assign in1 = sbox_in[2]; 
assign in2 = sbox_in[1]; 
assign in3 = sbox_in[0]; 
//Simplified Sbox Equations 
assign out0 = (!in0 & (!(in2 ^ in3) | in1 & in2)) | (in0 & !in1 & (in2 | in3)); 
assign out1 = (!in0 & (!in1 & (!in2 | !in3) | in1 & in2 & in3)) | (in0 & (!in1 & in2 & !in3 | !in2 & (in1 | 
in3))); 
assign out2 = (!in0 & (in2 & (!in1 | !in3))) | (in0 & (in1 & in3 | !in1 & (!in2 | !in3))); 
assign out3 = (!in0 & (in3 & (!in1 | in2) | in1 & !in2 & !in3)) | (in0 & (!in3 & (!in1 | in2) | in1 & !in2 & 
in3));  
assign sbox_out = {out0, out1, out2, out3}; 
endmodule  
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APPENDIX B 

LAMED PRNG VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    10:00:00 03/08/2010 
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    lamed 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: Pseudo random number generator based on published paper 
// LAMED - A PRNG for EPC Class-1 Generation-2 RFID specification 
////////////////////////////////////////////////////////////////////////////////// 
module lamed(clk, enable, reset, key, iv, out, data_ready); 
input clk; 
input enable;  
input reset; 
input [31:0] key;//stored secret key used to initialized PRNG 
input [31:0] iv;//stored initial vector also used to initialized PRNG 
output [31:0] out;//32 bit prng output. 16 bit comes from bitwise XOR of 16 MSB and 16 LSB 
output reg data_ready;//Flag to indicate PRNG complete 
//These three registers are acted upon to generate final result 
//Three primary operations are 32 bit XOR, 32 bit ADD, and variable length barrelshift 
reg [31:0] aux1, aux2, aux3; 
reg [3:0] state;//FSM state register 
//state values 
parameter LOAD  = 4'h0; 
parameter S2   = 4'h1; 
parameter SHIFT5  = 4'h2; 
parameter SHIFT3_1 = 4'h3; 
parameter SHIFT4_1  = 4'h4; 
parameter SHIFT2_1  = 4'h5; 
parameter SHIFT2_2  = 4'h6; 
parameter SHIFT3_2  = 4'h7; 
parameter SHIFT2_3 = 4'h8; 
parameter SHIFT4_2 = 4'h9; 
parameter SHIFT1  = 4'hA; 
parameter SHIFT2_4 = 4'hB; 
parameter READY = 4'hC; 
reg [2:0] counter;//counter used to track how many bit positions we have moved during a barrelshift 
operation 
always @ (posedge clk) begin 
if (reset) begin 
state   <= LOAD; 
data_ready  <= 0; 
counter   <= 0; 
end 
else if (enable) begin 
case (state) 
LOAD: begin 
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aux1 <= key + iv; 
aux2 <= key ^ iv; 
data_ready <= 0; 
state <= S2; 
end//LOAD 
S2: begin 
aux3  <= aux1; 
counter  <= 0;//reset counter value 
state  <= SHIFT5;  
end//S2 
SHIFT5: begin//5 bit barrelshift & Add 
if (counter < 5) begin 
counter   <= counter + 1'b1; 
aux3[31:0]  <= {aux3[30:0],aux3[31]}; 
end 
else begin 
state  <= SHIFT3_1; 
aux3  <= aux3 + aux2; 
counter  <= 0; 
end 
end//SHIFT5 
SHIFT3_1: begin//3 bit barrelshift & XOR 
if (counter < 3) begin 
counter   <= counter + 1'b1; 
aux3[31:0]  <= {aux3[30:0],aux3[31]}; 
end 
else begin 
state  <= SHIFT4_1; 
aux3  <= aux3 ^ aux1; 
counter  <= 0; 
end 
end//SHIFT3_1 
SHIFT4_1: begin//4 bit barrelshift & Add 
if (counter < 4) begin 
counter   <= counter + 1'b1; 
aux3[31:0]  <= {aux3[30:0],aux3[31]}; 
end 
else begin 
state  <= SHIFT2_1; 
aux3  <= aux3 + iv; 
counter  <= 0; 
end  
end//SHIFT4_1 
SHIFT2_1: begin//2 bit barrelshift & Add 
if (counter < 2) begin 
counter   <= counter + 1'b1; 
aux3[31:0]  <= {aux3[30:0],aux3[31]}; 
end 
else begin 
state  <= SHIFT2_2; 
aux3  <= aux3 + aux1; 
counter  <= 0; 
end  
end//SHIFT2_1 
SHIFT2_2: begin//2 bit barrelshift & XOR 
if (counter < 2) begin 
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counter   <= counter + 1'b1; 
aux3[31:0]  <= {aux3[30:0],aux3[31]}; 
end  
else begin 
state  <= SHIFT3_2; 
aux3  <= aux3 ^ aux1; 
counter  <= 0; 
end 
end//SHIFT2_2 
SHIFT3_2: begin//3 bit barrelshift & Add 
if (counter < 3) begin 
counter   <= counter + 1'b1; 
aux3[31:0]  <= {aux3[30:0],aux3[31]}; 
end 
else begin 
state  <= SHIFT2_3; 
aux3  <= aux3 + iv; 
counter  <= 0; 
end 
end  
SHIFT2_3: begin//2 bit barrelshift & Add 
if (counter < 2) begin 
counter   <= counter + 1'b1; 
aux3[31:0]  <= {aux3[30:0],aux3[31]}; 
end 
else begin 
state  <= SHIFT4_2; 
aux3  <= aux3 + aux1; 
counter  <= 0; 
end  
end//SHIFT2_3 
SHIFT4_2: begin//4 bit barrelshift & XOR 
if (counter < 4) begin 
counter <= counter + 1'b1; 
aux3[31:0] <= {aux3[30:0],aux3[31]}; 
end    
else begin 
state  <= SHIFT1; 
aux3  <= aux3 ^ iv; 
counter  <= 0; 
end 
end//SHIFT4_2  
SHIFT1: begin//1 bit barrelshift & Add 
if (counter < 1) begin 
counter   <= counter + 1'b1; 
aux3[31:0]  <= {aux3[30:0],aux3[31]}; 
end 
else begin 
state  <= SHIFT2_4; 
aux3  <= aux3 + aux2; 
counter  <= 3'b000; 
end 
end//SHIFT1  
SHIFT2_4: begin//2 bit barrelshift & Add 
if (counter < 2) begin 
counter   <= counter + 1'b1; 
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aux3[31:0]  <= {aux3[30:0],aux3[31]}; 
end 
else begin 
state  <= READY; 
aux3  <= aux3 ^ aux1; 
end 
end//SHIFT2_4 
READY: begin//Raise ready flag and hold value 
if (!data_ready) begin 
data_ready <= 1; 
end 
state <= READY; 
end//READY 
endcase 
end 
end 
assign out = (enable) ? aux3 : 0;//aux3 contains final value 
endmodule 
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APPENDIX C 

CRC16 VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    15:52:35 05/17/2010 
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    crc16 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: 16 bit cyclic redundancy check from Appendix F of EPC  
// Class-1 Generation 2 RFID Protocol 
////////////////////////////////////////////////////////////////////////////////// 
module crc16(clk, enable, reset, data_in, q); 
input reset;//Used to preload FFFF before clocking data 
input data_in;//Data should be shifted in on the posedge of clk 
output reg [15:0] q;//When calculating CRC16 (not checking) Q is actually !Q 
always @ (negedge clk) begin 
if (reset) begin 
q <= 16'hFFFF; 
end 
else if (enable) begin 
q[0] <= data_in ^ q[15]; 
q[1] <= q[0]; 
q[2] <= q[1]; 
q[3] <= q[2]; 
q[4] <= q[3]; 
q[5] <= (data_in ^ q[15]) ^ q[4]; 
q[6] <= q[5]; 
q[7] <= q[6]; 
q[8] <= q[7]; 
q[9] <= q[8]; 
q[10] <= q[9]; 
q[11] <= q[10]; 
q[12] <= (data_in ^ q[15]) ^ q[11]; 
q[13] <= q[12]; 
q[14] <= q[13]; 
q[15] <= q[14]; 
end 
end 
endmodule  
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APPENDIX D  

CRC5 VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    09:26:00 04/27/2010 
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    crc5 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: 5 bit cyclic redundency check circuit conforming to  
// Appendix F of the EPC Class 1 Generation 2 Protocol 
////////////////////////////////////////////////////////////////////////////////// 
module crc5(clk, enable, reset, data_in, q); 
input clk;//Digital logic clock 
input enable; 
input reset;//Used to preset shift register with 01001 
input data_in; 
output reg [4:0] q; 
always @ (posedge clk or posedge reset) begin 
if (reset) begin 
q <= 5'b01001;//Preset shift register 
end 
else if (enable) begin 
q[0] <= data_in ^ q[4]; 
q[1] <= q[0]; 
q[2] <= q[1]; 
q[3] <= q[2] ^ (data_in ^ q[4]); 
q[4] <= q[3]; 
end 
end 
endmodule 
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APPENDIX E 

BACKSCATTER CLOCK DIVIDER VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    08/25/2009 
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    blf_divider 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: Backscatter Link Frequency Divider 
//  
////////////////////////////////////////////////////////////////////////////////// 
module blf_divider(enable, clk, dr, trcal, blf_clk, reset); 
input clk;//2.56MHz sample clock, divided to create the backscatter clk 
input reset; 
input enable; 
input dr;//DR value received by FSM, 0 --> DR=8, 1 --> DR=64/3 
input [10:0] trcal;//Tag to Reader calibration symbol 
output reg blf_clk;//BLF = DR/trcal 
reg [4:0] clk_counter;//64 samples is the largest clk divider, so 32 per half clk 
reg [4:0] div_val;//used to store the clock divider value based on the trcal value 
always @* begin 
if (!dr) begin //DR = 8 
if (trcal <= 10'b0000110110) begin //54 
div_val = 5'h03;//426.6kHz 
end 
else if (trcal <= 10'b0001000111) begin //71 
div_val = 5'h04;//320kHz 
end 
else if (trcal <= 10'b0001010111) begin //87 
div_val = 5'h05;//256kHz 
end 
else if (trcal <= 10'b0001100111) begin //103 
div_val = 5'h06;//213.3kHz 
end 
else if (trcal <= 10'b0001110111) begin //119 
div_val = 5'h07;//182.9kHz 
end 
else if (trcal <= 10'b0010000111) begin //135 
div_val = 5'h08;//160kHz 
end 
else if (trcal <= 10'b0010010111) begin //151 
div_val = 5'h09;//142.2kHz 
end 
else if (trcal <= 10'b0010100111) begin //167 
div_val = 5'h0a;//128kHz 
end 
else if (trcal <= 10'b0010110111) begin //183 
div_val = 5'h0b;//116.4kHz 
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end 
else if (trcal <= 10'b0011000111) begin //199 
div_val = 5'h0c;//106.6kHz 
end 
else if (trcal <= 10'b0011010111) begin //215 
div_val = 5'h0d;//98.5kHz 
end 
else if (trcal <= 10'b0011100111) begin //231 
div_val = 5'h0e;//91.4kHz 
end 
else if (trcal <= 10'b0011110111) begin //247 
div_val = 5'h0f;//85.3kHz 
end 
else if (trcal <= 10'b0100000111) begin //263 
div_val = 5'h10;//80kHz 
end 
else if (trcal <= 10'b0100010111) begin //279 
div_val = 5'h11;//75.3kHz 
end 
else if (trcal <= 10'b0100100111) begin //295 
div_val = 5'h12;//71.1kHz 
end 
else if (trcal <= 10'b0100110111) begin //311 
div_val = 5'h13;//67.4kHz 
end 
else if (trcal <= 10'b0101000111) begin //327 
div_val = 5'h14;//64kHz 
end 
else if (trcal <= 10'b0101010111) begin //343 
div_val = 5'h15;//61.0kHz 
end 
else if (trcal <= 10'b0101100111) begin //359 
div_val = 5'h16;//58.2kHz 
end 
else if (trcal <= 10'b0101110111) begin //375 
div_val = 5'h17;//55.7kHz 
end 
else if (trcal <= 10'b0110000111) begin //391 
div_val = 5'h18;//53.3kHz 
end 
else if (trcal <= 10'b0110010111) begin //407 
div_val = 5'h19;//51.2kHz 
end 
else if (trcal <= 10'b0110100111) begin //423 
div_val = 5'h1a;//49.2kHz 
end 
else if (trcal <= 10'b0110110111) begin //439 
div_val = 5'h1b;//47.4kHz 
end 
else if (trcal <= 10'b0111000111) begin //455 
div_val = 5'h1c;//45.7kHz 
end 
else if (trcal <= 10'b0111010111) begin //471 
div_val = 5'h1d;//44.1kHz 
end 
else if (trcal <= 10'b0111100111) begin //487 
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div_val = 5'h1e;//42.7kHz 
end 
else if (trcal <= 10'b0111110111) begin //503 
div_val = 5'h1f;//41.3kHz 
end 
else if (trcal <= 10'b1000000000) begin //512 
div_val = 5'h20;//40kHz 
end 
end//DR = 8 
else begin //DR = 64/3 
if (trcal <= 10'b0001100110) begin //102 
div_val = 5'h02;//640kHz 
end 
else if (trcal <= 10'b0010010010) begin //146 
div_val = 5'h03;//426.6kHz 
end 
else if (trcal <= 10'b0010111101) begin //189 
div_val = 5'h04;//320kHz 
end 
else if (trcal <= 10'b0011101000) begin //232 
div_val = 5'h05;//256kHz 
end 
else if (trcal <= 10'b0100010011) begin //275 
div_val = 5'h06;//213.3kHz 
end 
else if (trcal <= 10'b0100111110) begin //318 
div_val = 5'h07;//182.9kHz 
end 
else if (trcal <= 10'b0101101001) begin //361 
div_val = 5'h08;//160kHz 
end 
else if (trcal <= 10'b0110010100) begin //404 
div_val = 5'h09;//142.2kHz 
end 
else if (trcal <= 10'b0110111110) begin //446 
div_val = 5'h0a;//128kHz 
end 
else if (trcal <= 10'b0111101001) begin //489 
div_val = 5'h0b;//116.4kHz 
end 
else if (trcal <= 10'b1000010100) begin //532 
div_val = 5'h0c;//106.6kHz 
end 
else if (trcal <= 10'b1000111111) begin //575 
div_val = 5'h0d;//98.5kHz 
end 
else if (trcal <= 10'b1001000000) begin //576 
div_val = 5'h0e;//91.4kHz 
end 
end//DR = 64/3 
end //always  
always @ (posedge clk) begin//NOTE, the 2.56 MHz clk MUST be activated before the enable signal. 
if (reset) begin 
clk_counter <= 0;//reset the counter 
end 
else if (enable) begin 
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if (clk_counter < div_val) begin 
clk_counter <= clk_counter + 1'b1; 
blf_clk   <= blf_clk; 
end 
else begin 
clk_counter <= 5'b00001; 
blf_clk   <= !blf_clk; 
end  
end 
else blf_clk   <= 0; 
end 
endmodule  
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APPENDIX F 

PIE DECODER VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    14:23:25 03/30/2010  
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    pie_decoder 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: PIE Decoding FSM, with output flags indicating when both 
// opcode and data have been received 
////////////////////////////////////////////////////////////////////////////////// 
module pie_decoder_new(clk256, data_in, enable, reset, op_code_ready, op_code, data_ready, data, 
query_received, rtcal, trcal, data_bits); 
input clk256;//2.56 MHz Clock used to sample incoming data 
input data_in;//Demodualted data input 
//When an instruction is received, the op code ready flag will signal the FSM that a command has been 
recieved 
//and will place the instruction opcode into the op_code register while it continues to sample the incoming 
data 
//When the data from a reader command has been read, the data_ready flag will signal 
//FIXME This might need to be further divided to give the FSM more time 
//FIXME may also need to tell the FSM how many bits of data have been received 
output reg query_received; 
reg [3:0] state; 
output reg [7:0] rtcal;//Reader --> Tag calibration symbol, Gen2 section 6.3.1.2.11 
//Used to sample RTcal & Delimiter max value of RTCal is 75us or 192 samples @ 2.56MHz 
reg [11:0] counter; 
reg [6:0] pivot;//1/2 RTcal , all symbols longer = data1, shorter = data0 
output reg [10:0] trcal;//Tag --> Reader calibration symbol, Gen2 section 6.3.1.2.11 
//counter to track the number of data bits received, output used for variable length data 
output reg [6:0] data_bits; 
reg [11:0] timeout;//Counter used to reset decoder after a certain amount of time in WAIT state to avoid 
endless looping 
//State machine state parameters 
parameter READY   = 4'h0; 
parameter DELIMITER   = 4'h1; 
parameter INITIALDATA0  = 4'h2; 
parameter INITIALPW   = 4'h3; 
parameter SAMPLERTCAL  = 4'h4; 
parameter INITIALPW2   = 4'h5; 
parameter DECIDETRCAL  = 4'h6; 
parameter DECIDEOPCODE  = 4'h7; 
parameter OPCODEPW   = 4'h8; 
parameter DATADECODE  = 4'h9; 
parameter DATAPW   = 4'hA; 
parameter WAIT    = 4'hB; 
//Total number of commands supported 
parameter NUMCMDS = 4'd11; 
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parameter MAX_OPCODE_LENGTH = 5'd16; 
//max num of bits to represent length of opcode 
//ln(MAX_OPCODE_LENGTH)/ln(2) 
parameter OPCODE_LENGTH = 3'd4; 
//ln(Max fixed length command - opcode length)/ln(2) 
parameter MAX_DATA_LENGTH = 3'd6; 
parameter CMD_TABLE_WORD = MAX_OPCODE_LENGTH + OPCODE_LENGTH + 1 + 
MAX_DATA_LENGTH; 
//Opcodes from Gen2 Table 6.18 
parameter QUERYREP   = 2'b00; 
parameter ACK    = 2'b01; 
parameter QUERY   = 4'b1000; 
parameter QUERYADJUST  = 4'b1001; 
parameter SELECT   = 4'b1010; 
parameter NAK    = 8'b11000000; 
parameter REQ_RN   = 8'b11000001; 
parameter READ   = 8'b11000010; 
parameter WRITE   = 8'b11000011; 
parameter KILL    = 8'b11000100; 
parameter LOCK   = 8'b11000101; 
parameter ACCESS  = 8'b11000110; 
//This 2d array will contain the opcode, opcode length, whether it is fixed length, how many bits of data if it 
is fixed length 
reg  [CMD_TABLE_WORD - 1:0] cmdreg [NUMCMDS-1 : 0]; 
//Used to count the number of bits in the opcode 
reg [4:0] op_code_counter; 
//Counter 
integer i; 
always @ (posedge clk256) begin 
if (reset) begin 
state     <= READY; 
op_code_ready    <= 0; 
data_ready    <= 0; 
op_code    <= 0; 
data     <= 0; 
counter     <= 0; 
query_received    <= 0; 
data_bits    <= 0; 
op_code_counter    <= 0; 
timeout    <= 0; 
rtcal    <= 0; 
//Command Information Array 
//Array contains all supported Opcodes and the length of the data 
//16 Bits for Opcode, 4 bits for opcode length, 1 bit for fixed/non fixed length 
//6 bits for data length (if fixed) 
cmdreg[0] <= {14'h0,  QUERYREP,   4'd2, 1'b1, 6'd02}; 
cmdreg[1] <= {14'h0,  ACK,    4'd2, 1'b1, 6'd16}; 
cmdreg[2] <= {12'h0,  QUERY,   4'd4, 1'b1, 6'd18}; 
cmdreg[3] <= {12'h0,  QUERYADJUST,  4'd4, 1'b1, 6'd5}; 
cmdreg[4] <= {12'h0,  SELECT,   4'd4, 1'b0, 6'd0}; 
cmdreg[5] <= {8'h0,  NAK,    4'd8, 1'b1, 6'd0}; 
cmdreg[6] <= {8'h0,  REQ_RN,   4'd8, 1'b1, 6'd32}; 
cmdreg[7] <= {8'h0,  READ,    4'd8, 1'b0, 6'd0}; 
cmdreg[8] <= {8'h0,  WRITE,   4'd8, 1'b0, 6'd0}; 
cmdreg[9] <= {8'h0,  KILL,    4'd8, 1'b1, 6'd52}; 
cmdreg[10] <= {8'h0,  ACCESS,   4'd8, 1'b1, 6'd48}; 
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end 
else if (enable) begin 
case (state) 
READY: begin//Reset counters and prepare for incoming data 
if (data_in) begin 
state    <= READY; 
op_code_ready   <= 0; 
data_ready   <= 0; 
op_code   <= 0; 
data    <= 0; 
counter    <= 0; 
query_received   <= 0; 
data_bits   <= 0; 
op_code_counter   <= 0; 
timeout    <= 0; 
rtcal   <= 0; 
end 
else begin//When data in = 0 begin sampling delimiter 
state <= DELIMITER; 
counter <= counter + 1; 
end 
end //READY 
DELIMITER: begin 
//Delimiter of 12.5 us +/- 5% means between 30 and 34 samples is a valid delimiter (at 2.56MHz) 
if (counter > 50) begin//FIXME, RFID reader generates long delimter values 
state <= READY; 
end 
else if (!data_in) begin 
state <= DELIMITER; 
counter <= counter + 1; 
end 
else if (data_in) begin 
if (counter < 20) begin//FIXME counter value too small technically, but RFID reader generating small 
demlimiter 
state <= READY; 
end 
else begin 
state <= INITIALDATA0; 
end 
end 
end //DELIMITER 
INITIALDATA0: begin//all commands begin with data0 
if (data_in) begin 
state <= INITIALDATA0; 
end 
else begin 
state <= INITIALPW; 
end 
end //INITIALDATA0 
INITIALPW: begin//First PW value, could check length is correct 
if (!data_in) begin 
state <= INITIALPW; 
counter <= 0; 
end 
else begin 
state <= SAMPLERTCAL; 
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counter <= counter + 1; 
end 
end //INITIALPW 
SAMPLERTCAL: begin//RTcal always follows initial data0 
if (data_in) begin 
state <= SAMPLERTCAL; 
counter <= counter + 1; 
end 
else begin 
state <= INITIALPW2; 
pivot <= counter / 2; 
trcal <= 0;//reset TRcal counter 
rtcal <= counter;//store RTcal 
end 
end //SAMPLERTCAL 
INITIALPW2: begin//Pw after RTcal symbol 
if (!data_in) begin 
state <= INITIALPW2; 
counter <= counter + 1; 
end 
else begin 
state <= DECIDETRCAL; 
trcal <= trcal + 1; 
op_code_counter <= 0; 
end 
end //INITIALPW2 
DECIDETRCAL: begin 
//At this point we could either be receiving a command or a TRcal value 
//If we do get a TRcal value then we know we have a Query command 
if (data_in) begin 
trcal <= trcal + 1; 
if (trcal < 8*pivot) begin//Timeout 
state <= DECIDETRCAL; 
end 
else begin 
state <= READY; 
end 
end 
else begin 
if (trcal < pivot) begin //We got a Data0       
op_code[15:0] <= {op_code[14:0], 1'b0}; 
op_code_counter <= op_code_counter + 1; 
end 
else begin //Don't know if its Data1 or TRCal 
if (trcal < rtcal) begin //TRcal is always greater than RTcal 
//We got a Data1 
op_code[15:0] <= {op_code[14:0], 1'b1}; 
op_code_counter <= op_code_counter + 1; 
end 
end 
state <= OPCODEPW; 
counter <= 0; 
end 
end //DECIDETRCAL 
OPCODEPW: begin 
//Check the cmdreg table to determine if a valid opcode has been received 
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for (i = 0; i < NUMCMDS; i = i + 1) begin 
if (op_code == cmdreg[i][26:11] & op_code_counter == cmdreg[i][10:7]) begin 
op_code_ready <= 1; 
end 
end 
if (!data_in) begin 
state <= OPCODEPW; 
counter <= 0; 
end 
else begin 
if (!op_code_ready) begin 
state <= DECIDEOPCODE; 
end 
else begin 
state <= DATADECODE; 
end 
counter <= counter + 1; 
end 
end //OPCODEPW 
DECIDEOPCODE: begin 
if (data_in) begin 
counter <= counter + 1; 
if (counter < 8*pivot) begin 
state <= DECIDEOPCODE; 
end 
else begin 
state <= READY;//Timeout 
end 
end 
else begin 
if (counter < pivot) begin 
//Data0 received 
op_code[15:0] <= {op_code[14:0], 1'b0}; 
op_code_counter <= op_code_counter + 1; 
state <= OPCODEPW; 
end 
else if (counter > pivot) begin 
//Data1 received 
op_code[15:0] <= {op_code[14:0], 1'b1}; 
op_code_counter <= op_code_counter + 1; 
state <= OPCODEPW; 
end    
end 
end //DECIDEOPCODE 
DATADECODE: begin 
if (data_in) begin 
if (counter < rtcal) begin 
state <= DATADECODE; 
counter <= counter + 1; 
end 
else begin 
//long symbol means we have received all the data 
//should only happen for non fixed length data 
data_ready <= 1; 
state <= WAIT; 
end 
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end 
else begin 
if (counter < pivot) begin 
//Data0 received 
data[79:0] <= {data[78:0], 1'b0}; 
end 
else if (counter > pivot) begin 
//Data1 received 
data[79:0] <= {data[78:0], 1'b1}; 
end 
state <= DATAPW; 
counter <= 0; 
data_bits <= data_bits + 1; 
end 
end //DATADECODE 
DATAPW: begin 
//Based on the opcode we can tell by the number of data bits if we have received all the data 
//Only works for fixed length instructions 
for(i = 0; i < NUMCMDS; i = i + 1) begin 
if (data_bits == cmdreg[i][5:0] & op_code == cmdreg[i][26:11] & cmdreg[i][6] == 1) begin 
data_ready  <= 1; 
timeout   <= 0; 
end 
//Need to raise flag faster on a READ command 
else if (op_code == 16'h00C2) begin 
case (data_bits) 
//EBV formatting dictates how long the READ command is 
//We will only be supporting 50 bit read commands 
50: begin 
if (data[47] == 0) begin 
data_ready  <= 1; 
timeout   <= 0; 
end 
end 
endcase 
end 
end 
if (!data_in) begin 
state <= DATAPW; 
end 
else begin 
if (data_ready) begin 
state <= WAIT; 
end 
else begin 
state <= DATADECODE; 
counter <= counter + 1; 
end 
end 
end //DATAPW 
WAIT: begin 
//THIS state will hold the output until the decoder is reset after all data has been received 
//Or timeout = 6*RTcal 
if (timeout < 12*pivot) begin 
state <= WAIT; 
timeout <= timeout + 1; 
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end 
else begin 
state <= READY;//Timeout has occured 
end 
end //WAIT 
endcase //state 
end 
end 
endmodule 

  



 

73 
 

APPENDIX G 

TPRI VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    10:22:52 05/24/2010  
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    tpri_logic  
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: This module takes in DR and TRcal and outputs Tpri. Tpri 
// is used in calculation of T1 
////////////////////////////////////////////////////////////////////////////////// 
module tpri_logic(dr, trcal_value, tpri); 
//For more information on T1 see Gen2 Figure 6.13 Link Timing Parameters 
//Discrete values of tpri 
//tpri = value / Dig Clk 
//Keep in mind that trcal_value is sampled with the sample (NOT DIGITAL) clk 
always @ (dr, trcal_value) begin 
case (dr) 
0: begin//DR=8 
if (trcal_value < 56) begin 
tpri <= 3; 
end 
else if (trcal_value < 72) begin 
tpri <= 4; 
end 
else if (trcal_value < 88) begin 
tpri <= 5; 
end 
else if (trcal_value < 104) begin 
tpri <= 6; 
end 
else if (trcal_value < 120) begin 
tpri <= 7; 
end 
else if (trcal_value < 136) begin 
tpri <= 8; 
end 
else if (trcal_value < 152) begin 
tpri <= 9; 
end 
else if (trcal_value < 168) begin 
tpri <= 10; 
end 
else if (trcal_value < 184) begin 
tpri <= 11; 
end 
else if (trcal_value < 200) begin 
tpri <= 12; 
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end 
else if (trcal_value < 216) begin 
tpri <= 13; 
end 
else if (trcal_value < 232) begin 
tpri <= 14; 
end 
else if (trcal_value < 248) begin 
tpri <= 15; 
end 
else if (trcal_value < 264) begin 
tpri <= 16; 
end 
else if (trcal_value < 280) begin 
tpri <= 17; 
end 
else if (trcal_value < 296) begin 
tpri <= 18; 
end 
else if (trcal_value < 312) begin 
tpri <= 19; 
end 
else if (trcal_value < 328) begin 
tpri <= 20; 
end 
else if (trcal_value < 344) begin 
tpri <= 21; 
end 
else if (trcal_value < 360) begin 
tpri <= 22; 
end 
else if (trcal_value < 376) begin 
tpri <= 23; 
end 
else if (trcal_value < 392) begin 
tpri <= 24; 
end 
else if (trcal_value < 408) begin 
tpri <= 25; 
end 
else if (trcal_value < 424) begin 
tpri <= 26; 
end 
else if (trcal_value < 440) begin 
tpri <= 27; 
end 
else if (trcal_value < 456) begin 
tpri <= 28; 
end 
else if (trcal_value < 472) begin 
tpri <= 29; 
end 
else if (trcal_value < 488) begin 
tpri <= 30; 
end 
else if (trcal_value < 504) begin 
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tpri <= 31; 
end 
else if (trcal_value < 520) begin//Actual highest should only be 513 
tpri <= 32; 
end 
end 
1: begin//DR=64/3 
if (trcal_value < 107) begin 
tpri <= 2; 
end 
else if (trcal_value < 150) begin 
tpri <= 3; 
end 
else if (trcal_value < 192) begin 
tpri <= 4; 
end 
else if (trcal_value < 235) begin 
tpri <= 5; 
end 
else if (trcal_value < 278) begin 
tpri <= 6; 
end 
else if (trcal_value < 320) begin 
tpri <= 7; 
end 
else if (trcal_value < 363) begin 
tpri <= 8; 
end 
else if (trcal_value < 406) begin 
tpri <= 9; 
end 
else if (trcal_value < 448) begin 
tpri <= 10; 
end 
else if (trcal_value < 491) begin 
tpri <= 11; 
end 
else if (trcal_value < 534) begin 
tpri <= 12; 
end 
else if (trcal_value < 580) begin 
tpri <= 13; 
end 
end 
default: tpri <= 0; 
endcase 
end 
endmodule  
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APPENDIX H 

DATA TRANSMISSION VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    13:25:38 05/11/2010  
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    tx_fsm  
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: Circuit designed to select the correct encoder and data 
// when transmitting data to RFID reader 
////////////////////////////////////////////////////////////////////////////////// 
module tx_fsm(blf_clk, enable, reset, num_bits, trext, tx_data, tx_complete, data_out, m); 
input enable; 
input [7:0] num_bits;//Number of data bits to be transmitted 
input [1:0] m;//m value from Gen2 6.3.1.3.2.3 used to select encoding type 
output tx_complete;//Flag indiating data has been transmitted 
output data_out;//output on transmit pin 
reg encoder_data_in;//Input to encoders, output of MUX of input data, selected by counter 
//encoder reset and enable 
reg fm0_reset, miller_reset; 
wire fm0_enable, miller_enable; 
wire fm0_preamble, miller_preamble; 
//encoder outputs 
wire fm0_out, miller_out; 
//used to track number of clock cycles for different miller encoding types 
wire [2:0] miller_clk_count; 
reg [7:0] i;//counter to select data to transmit 
//Output data Mux 129 to 1 
8'h08: encoder_data_in = tx_data[8]; 
8'h09: encoder_data_in = tx_data[9]; 
8'h0a: encoder_data_in = tx_data[10]; 
8'h0b: encoder_data_in = tx_data[11]; 
8'h0c: encoder_data_in = tx_data[12]; 
8'h0d: encoder_data_in = tx_data[13]; 
8'h0e: encoder_data_in = tx_data[14]; 
8'h0f: encoder_data_in = tx_data[15]; 
8'h10: encoder_data_in = tx_data[16]; 
8'h11: encoder_data_in = tx_data[17]; 
8'h12: encoder_data_in = tx_data[18]; 
8'h13: encoder_data_in = tx_data[19]; 
8'h14: encoder_data_in = tx_data[20]; 
8'h15: encoder_data_in = tx_data[21]; 
8'h16: encoder_data_in = tx_data[22]; 
8'h17: encoder_data_in = tx_data[23]; 
8'h18: encoder_data_in = tx_data[24]; 
8'h19: encoder_data_in = tx_data[25]; 
8'h1a: encoder_data_in = tx_data[26]; 
8'h1b: encoder_data_in = tx_data[27]; 
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8'h1c: encoder_data_in = tx_data[28]; 
8'h1d: encoder_data_in = tx_data[29]; 
8'h1e: encoder_data_in = tx_data[30]; 
8'h1f: encoder_data_in = tx_data[31]; 
8'h20: encoder_data_in = tx_data[32]; 
8'h21: encoder_data_in = tx_data[33]; 
8'h22: encoder_data_in = tx_data[34]; 
8'h23: encoder_data_in = tx_data[35]; 
8'h24: encoder_data_in = tx_data[36]; 
8'h25: encoder_data_in = tx_data[37]; 
8'h26: encoder_data_in = tx_data[38]; 
8'h27: encoder_data_in = tx_data[39]; 
8'h28: encoder_data_in = tx_data[40]; 
8'h29: encoder_data_in = tx_data[41]; 
8'h2a: encoder_data_in = tx_data[42]; 
8'h2b: encoder_data_in = tx_data[43]; 
8'h2c: encoder_data_in = tx_data[44]; 
8'h2d: encoder_data_in = tx_data[45]; 
8'h2e: encoder_data_in = tx_data[46]; 
8'h2f: encoder_data_in = tx_data[47]; 
8'h30: encoder_data_in = tx_data[48]; 
8'h31: encoder_data_in = tx_data[49]; 
8'h32: encoder_data_in = tx_data[50]; 
8'h33: encoder_data_in = tx_data[51]; 
8'h34: encoder_data_in = tx_data[52]; 
8'h35: encoder_data_in = tx_data[53]; 
8'h36: encoder_data_in = tx_data[54]; 
8'h37: encoder_data_in = tx_data[55]; 
8'h38: encoder_data_in = tx_data[56]; 
8'h39: encoder_data_in = tx_data[57]; 
8'h3a: encoder_data_in = tx_data[58]; 
8'h3b: encoder_data_in = tx_data[59]; 
8'h3c: encoder_data_in = tx_data[60]; 
8'h3d: encoder_data_in = tx_data[61]; 
8'h3e: encoder_data_in = tx_data[62]; 
8'h3f: encoder_data_in = tx_data[63]; 
8'h40: encoder_data_in = tx_data[64]; 
8'h41: encoder_data_in = tx_data[65]; 
8'h42: encoder_data_in = tx_data[66]; 
8'h43: encoder_data_in = tx_data[67]; 
8'h44: encoder_data_in = tx_data[68]; 
8'h45: encoder_data_in = tx_data[69]; 
8'h46: encoder_data_in = tx_data[70]; 
8'h47: encoder_data_in = tx_data[71]; 
8'h48: encoder_data_in = tx_data[72]; 
8'h49: encoder_data_in = tx_data[73]; 
8'h4a: encoder_data_in = tx_data[74]; 
8'h4b: encoder_data_in = tx_data[75]; 
8'h4c: encoder_data_in = tx_data[76]; 
8'h4d: encoder_data_in = tx_data[77]; 
8'h4e: encoder_data_in = tx_data[78]; 
8'h4f: encoder_data_in = tx_data[79]; 
8'h50: encoder_data_in = tx_data[80]; 
8'h51: encoder_data_in = tx_data[81]; 
8'h52: encoder_data_in = tx_data[82]; 
8'h53: encoder_data_in = tx_data[83]; 



 

78 
 

8'h54: encoder_data_in = tx_data[84]; 
8'h55: encoder_data_in = tx_data[85]; 
8'h56: encoder_data_in = tx_data[86]; 
8'h57: encoder_data_in = tx_data[87]; 
8'h58: encoder_data_in = tx_data[88]; 
8'h59: encoder_data_in = tx_data[89]; 
8'h5a: encoder_data_in = tx_data[90]; 
8'h5b: encoder_data_in = tx_data[91]; 
8'h5c: encoder_data_in = tx_data[92]; 
8'h5d: encoder_data_in = tx_data[93]; 
8'h5e: encoder_data_in = tx_data[94]; 
8'h5f: encoder_data_in = tx_data[95]; 
8'h60: encoder_data_in = tx_data[96]; 
8'h61: encoder_data_in = tx_data[97]; 
8'h62: encoder_data_in = tx_data[98]; 
8'h63: encoder_data_in = tx_data[99]; 
8'h64: encoder_data_in = tx_data[100]; 
8'h65: encoder_data_in = tx_data[101]; 
8'h66: encoder_data_in = tx_data[102]; 
8'h67: encoder_data_in = tx_data[103]; 
8'h68: encoder_data_in = tx_data[104]; 
8'h69: encoder_data_in = tx_data[105]; 
8'h6a: encoder_data_in = tx_data[106]; 
8'h6b: encoder_data_in = tx_data[107]; 
8'h6c: encoder_data_in = tx_data[108]; 
8'h6d: encoder_data_in = tx_data[109]; 
8'h6e: encoder_data_in = tx_data[110]; 
8'h6f: encoder_data_in = tx_data[111]; 
8'h70: encoder_data_in = tx_data[112]; 
8'h71: encoder_data_in = tx_data[113]; 
8'h72: encoder_data_in = tx_data[114]; 
8'h73: encoder_data_in = tx_data[115]; 
8'h74: encoder_data_in = tx_data[116]; 
8'h75: encoder_data_in = tx_data[117]; 
8'h76: encoder_data_in = tx_data[118]; 
8'h77: encoder_data_in = tx_data[119]; 
8'h78: encoder_data_in = tx_data[120]; 
8'h79: encoder_data_in = tx_data[121]; 
8'h7a: encoder_data_in = tx_data[122]; 
8'h7b: encoder_data_in = tx_data[123]; 
8'h7c: encoder_data_in = tx_data[124]; 
8'h7d: encoder_data_in = tx_data[125]; 
8'h7e: encoder_data_in = tx_data[126]; 
8'h7f: encoder_data_in = tx_data[127]; 
8'h80: encoder_data_in = tx_data[128]; 
default: encoder_data_in = 1'b0; 
end 
//foward reset to encoders 
always @* begin 
if (reset) begin 
fm0_reset   <= 1; 
miller_reset  <= 1; 
end 
else begin 
fm0_reset  <= 0; 
miller_reset  <= 0; 
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end 
end 
//Counter is incremented and therefore data is shifted to encoders 
always @ (negedge blf_clk or posedge reset) begin 
if (reset) begin 
i  <= 0; 
end 
else if (enable & !tx_complete) begin 
//Data is shift into the encoders on the negative edge of the clk 
if (fm0_preamble | miller_preamble) begin 
case (m) 
2'b00: begin 
if (i < num_bits) begin 
i <= i + 1; 
end 
end 
2'b01: begin 
if (i < num_bits & miller_clk_count == 1) begin 
i <= i + 1; 
end 
end 
2'b10: begin 
if (i < num_bits & miller_clk_count == 3) begin 
i <= i + 1; 
end 
end 
2'b11: begin 
if (i < num_bits & miller_clk_count == 7) begin 
i <= i + 1; 
end 
end 
endcase 
end 
else begin 
i <= 0; 
end 
end 
end 
fm0_encoder fm0encoder( .enable(fm0_enable),  
.reset(fm0_reset), 
.blf_clk(blf_clk),  
.trext(trext),  
.data_in(encoder_data_in),  
.data_out(fm0_out), 
.preamble_complete(fm0_preamble) 
); 
miller_encoder millerencoder( 
.enable(miller_enable),  
.reset(miller_reset),  
.data_in(encoder_data_in),  
.data_out(miller_out),  
.m(m),  
.blf_clk(blf_clk),  
.trext(trext),  
.preamble_complete(miller_preamble), 
.clk_count(miller_clk_count) 
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); 
assign tx_complete = (reset) ? 1'b0 : (enable & i == num_bits & (!data_out) & (miller_enable | 
fm0_enable)) ? 1'b1 : 1'b0; 
//Drive output to 0 if reset, or select the correct encoder output 
assign data_out = (reset) ? 1'b0 : (fm0_enable) ? fm0_out : (miller_enable) ? miller_out : 1'b0; 
//enable encoders based on m value and enable signal 
assign fm0_enable = (enable) ? (m == 2'b00) ? 1'b1 : 1'b0 : 1'b0; 
assign miller_enable = (enable) ? (m == 2'b01 | m == 2'b10 | m == 2'b11) ? 1'b1 : 1'b0 : 1'b0; 
endmodule 
 
`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    11:07:16 05/17/2010   
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    miller_encoder 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: Miller encoder in compliance with Gen2 section 6.3.1.3.2.3 
//  
///////////////////////////////////////////////////////////////////////////////// 
module miller_encoder(enable, reset, data_in, data_out, m, blf_clk, trext, preamble_complete, clk_count); 
input enable; 
input reset; 
input blf_clk;//Output clk of the Backscatter link frequency generator 
//Data to be shifted out of the miller encoder, max of 129 bits in this version 
//Final bit is always 1 
input data_in; 
//Miller sub carrier value (2, 4, or 8) 
//01 = 2, 10 = 4, 11 = 8 (Gen 2 Table 6.21) 
input [1:0] m; 
input trext;//TRext value 0 = short preamble, 1 = long preamble 
output data_out;//Resulting encoded output 
output reg [2:0] clk_count;//Count clk ticks to determine when to change phase by counting clk ticks 
reg [2:0] m_count;//Tells encoder how many clk ticks/bit based on m value 
output reg preamble_complete;//Flag indicating preamble is complete 
 
//FSM States: 
//1. PREAMBLE_INIT when 16 or 4 sets of 0 w/o phase change are transmitted 
//2. DATA_TX where first 010111 then actual data are transmitted 
reg state; 
parameter PREAMBLE_INIT = 1'b0; 
parameter DATA_TX = 1'b1; 
wire blf_clk_n; 
//Signal indicating the intitial part of the preamble is complete 
reg preamble_init_complete; 
//Register that stores constant value of 010111 sent during preamble 
reg [5:0] preamble; 
//used to track the 6 bits 010111 in the preamble 
reg [2:0] preamble_six_count; 
//count the number of preamble bits transmitted 
reg [7:0] preamble_count; 
//XOR of these values used to generate output capable of changing signal phase 
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reg data1, data2; 
//Used to track the last bit transmitted 
reg prev_bit; 
//Used to ensure data transmission begins on posedge of clk 
reg start; 
//Actual data about to be transmitted 
wire tx_data; 
always @ (posedge blf_clk or posedge reset) begin 
if (reset) begin 
data1 <= 0; 
end 
else if (enable & start) begin 
case (state) 
PREAMBLE_INIT: begin 
//Always toggle during preamble initial phase 
data1 <= !data1; 
end 
DATA_TX: begin 
//data will always toggle unless prev_bit & data_in == 0, 
//or if transmitting a 1 on a specific clk tick determined by m value 
if (clk_count == 0 & !prev_bit & !tx_data) begin 
data1 <= data1; 
end 
else begin 
case (m) 
2'b01: begin 
if (clk_count == 1 & tx_data) begin 
data1 <= data1; 
end 
else begin 
data1 <= !data1; 
end 
end 
2'b10: begin 
if (clk_count == 2 & tx_data) begin 
data1 <= data1; 
end 
else begin 
data1 <= !data1; 
end 
end 
2'b11: begin 
if (clk_count == 4 & tx_data) begin 
data1 <= data1; 
end 
else begin 
data1 <= !data1; 
end 
end 
default: data1 <= 0; 
endcase 
end 
end 
endcase 
end 
end 
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always @ (posedge blf_clk_n or posedge reset) begin 
if (reset) begin 
data2 <= 0; 
start <= 0; 
end 
else if (start) begin 
data2 <= !data2; 
end 
else if (enable) begin 
start <= 1; 
end 
end 
//Tracks number of clk ticks based on m value 
always @ (posedge blf_clk_n or posedge reset) begin 
if (reset) begin 
clk_count <= 0; 
preamble <= 6'b010111; 
prev_bit <= 1; 
end 
else if (enable & start & preamble_init_complete) begin 
case (m) 
2'b01: begin 
if(clk_count < 1) begin 
clk_count <= clk_count + 1; 
end 
else begin 
clk_count <= 0; 
//Previous bit is used to calculate when to change phase 
if (preamble_complete) begin 
prev_bit <= tx_data; 
end 
else begin 
preamble <= preamble << 1; 
end 
end 
end 
2'b10: begin 
if(clk_count < 3) begin 
clk_count <= clk_count + 1; 
end 
else begin 
clk_count <= 0; 
//Previous bit is used to calculate when to change phase 
if (preamble_complete) begin 
prev_bit <= tx_data; 
end 
else begin 
preamble <= preamble << 1; 
end 
end 
end 
2'b11: begin 
if(clk_count < 7) begin 
clk_count <= clk_count + 1; 
end 
else begin 
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clk_count <= 0; 
//Previous bit is used to calculate when to change phase 
if (preamble_complete) begin 
prev_bit <= tx_data; 
end 
else begin 
preamble <= preamble << 1; 
end 
end 
end 
endcase 
end 
end 
always @ (posedge blf_clk_n or posedge reset) begin 
if (reset) begin 
preamble_six_count <= 0; 
preamble_complete <= 0; 
end 
else if (preamble_init_complete) begin 
if (clk_count == 0) begin 
if (preamble_six_count < 6) begin 
preamble_six_count <= preamble_six_count + 1; 
end 
else begin 
preamble_complete <= 1; 
end 
end 
end 
end 
always @ (posedge data_out or posedge reset) begin 
if (reset) begin 
preamble_count <= 0; 
end 
else if (enable & state == PREAMBLE_INIT) begin 
preamble_count <= preamble_count + 1; 
end 
end 
always @ (posedge data_out or posedge reset) begin 
if (reset) begin 
state <= PREAMBLE_INIT; 
preamble_init_complete <= 0; 
end 
//16*m_value - 1 = number of data_out ticks (long preamble) 
else if (trext) begin 
case (m) 
2'b01: begin 
if (preamble_count == 32) begin 
preamble_init_complete <= 1; 
state <= DATA_TX; 
end 
end 
2'b10: begin 
if (preamble_count == 64) begin 
preamble_init_complete <= 1; 
state <= DATA_TX; 
end 
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end 
2'b11: begin 
if (preamble_count == 128) begin 
preamble_init_complete <= 1; 
state <= DATA_TX; 
end 
end 
endcase 
end 
//4*m_value = number of data_out ticks (short preamble) 
else begin 
case (m) 
2'b01: begin 
if (preamble_count == 8) begin 
preamble_init_complete <= 1; 
state <= DATA_TX; 
end 
end 
2'b10: begin 
if (preamble_count == 16) begin 
preamble_init_complete <= 1; 
state <= DATA_TX; 
end 
end 
2'b11: begin 
if (preamble_count == 32) begin 
preamble_init_complete <= 1; 
state <= DATA_TX; 
end 
end 
endcase 
end 
end 
assign tx_data = (preamble_complete) ? (data_in) : (preamble[5]); 
assign blf_clk_n = !blf_clk; 
assign data_out = data1 ^ data2; 
endmodule 
 
`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    13:52:37 08/27/2009  
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    fm0_encoder 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: FM0 encoder in compliance with Gen2 section 6.3.1.3.2.2 
//  
///////////////////////////////////////////////////////////////////////////////// 
module fm0_encoder(enable, blf_clk, trext, data_in, data_out, preamble_complete, reset); 
input blf_clk;//Backscatter Link Freqency 
input enable; 
input reset; 
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//Bit used to decided on which preamble (extended or not) from (6.3.1.3.2.2) 
//1 = extended, 0 = short 
input trext; 
input data_in;//Data to be encoded, shifted in serially 
output data_out;//Encoded data output 
//Indicates preamble is complete, do not want to shift data in until preamble is complete 
output reg preamble_complete; 
wire blf_clk_n;//Used for FM0 biphase sampling 
reg [4:0] preamble_counter;//Used to track how many preamble bits have been completed 
reg data_in_buf; 
reg data1, data2;//Xor of these values creates data out 
reg state;//Simple 1 bit state machine to differentiate between preamble and data transmit 
parameter PREAMBLE = 0; 
parameter DATA_TX = 1; 
//used to ensure that posedge of blf clk start data transfer 
reg start; 
always @ (posedge blf_clk or posedge reset) begin 
if (reset) begin 
data1 <= 0; 
start <= 0; 
end 
else if (enable) begin 
//always toggle on posedge of sample clock except during 1 bit of preamble 
if (trext & preamble_counter == 16 | !trext & preamble_counter == 4) begin 
data1 <= data1; 
end 
else data1 <= !data1; 
//shift in data 
data_in_buf <= data_in; 
if (!start) start <= 1; 
end 
end 
always @ (posedge blf_clk_n or posedge reset) begin 
if (reset) begin 
data2 <= 0; 
preamble_complete <= 0; 
preamble_counter <= 0; 
state <= PREAMBLE; 
end 
else if (enable & start) begin 
case (state) 
//0 is the preamble state 
PREAMBLE: begin 
if (!trext) begin 
//Short Preamble 
case (preamble_counter) 
0: data2 <= data2; 
1: data2 <= !data2; 
2: data2 <= data2; 
3: data2 <= !data2; 
4: data2 <= data2; 
5: begin 
data2 <= data2; 
preamble_complete <= 1; 
state <= DATA_TX; 
end 
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endcase 
end 
else begin 
//Long Preamble 
case (preamble_counter) 
12: data2 <= data2; 
14: data2 <= data2; 
16: data2 <= data2; 
17: begin  
data2 <= data2; 
preamble_complete <= 1; 
state <= DATA_TX; 
end 
default: data2 <= !data2; 
endcase 
end 
//Be sure to always reset the encoder or the counter value will be incorrect 
preamble_counter <= preamble_counter + 1; 
end//PREAMBLE 
DATA_TX: begin 
//Toggle if transmitting a 0 
if (!data_in_buf) begin 
data2 <= !data2; 
end 
else data2 <= data2; 
end//DATA_TX 
endcase 
end 
end//always 
assign blf_clk_n = !blf_clk; 
assign data_out = data1 ^ data2; 
endmodule 
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APPENDIX I 

PRIMARY FSM VERILOG 

                                              
`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    16:07:30 04/01/2010 
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    primary_fsm 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: Primary FSM for Class 1 Generation 2 EPC RFID Tag with  
// several modifications such as an external temperature sensor 
////////////////////////////////////////////////////////////////////////////////// 
module primary_fsm(sensor_rst_n, sensor_clk_conv, sensor_dq, por, demod_data, clk128, clk256, 
clk256_enable, receive_enable, transmit, mem_reset); 
input por;//Power on Reset 
input demod_data;//Demodulated data input from Analog Frontend 
input clk128;//1.28 MHz clock which drives most of the digital logic 
input clk256;//2.56 MHz clock used for PIE decoder, BLF divider, & temperature sensor 
input mem_reset;//Want to be independant of FSM 
output reg clk256_enable;//2.56 MHz Sample & backscatter clock enable 
output reg receive_enable;//Enables WISP to receive data 
output transmit; 
//Memory register control signals 
reg mem_enable;//Allow read/write to memory 
reg mem_write_enable;//1 = mem write, 0 = mem read 
reg [1:0] mem_bank;//Memory bank (Figure 6.17) 
reg [15:0] mem_in;//Memory input on a write 
reg [3:0] mem_word;//Word # being read/written to memory 
reg [7:0] mem_max;//Last word # to be read/written to in memory 
reg [2:0] mem_count;//# of words read/written to memory 
wire [15:0] mem_out;//Memory output on a read 
//PIE decoder signals 
reg pie_enable; 
reg pie_reset; 
wire [79:0] pie_data;//Max of 80 bits of data from each reader command 
wire pie_data_ready;//Flag indicating command data has been decoded 
wire [15:0] pie_opcode;//Reader command opcode 
wire pie_opcode_ready;//Flag indicating reader command opcode has been decoded 
wire pie_query_received; 
wire [6:0] pie_data_bits;//Commands can be variable length, tracks number of bits received 
//LAMED PRNG Control Signals 
reg prng_enable; 
reg prng_reset; 
reg [31:0] prng_key, prng_iv; 
reg [15:0] prng_16_out;//16 bit PRNG value, result of XOR between 16 MSB and 16 LSB of 32 bit output 
reg n;//Indicates odd or even round of PRN generation 
reg [31:0] a0, a1; 
wire prng_ready;//Flag indicating PRNG has completed generating a new result 
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wire [31:0] prng_32_out;//32 bit output of PRNG 
reg [15:0] prng_16_prev;//Previous value of prng used to XOR with password on Access Command 
//CRC5 Control Signals 
reg crc5_reset; 
reg crc5_enable; 
reg [21:0] crc5_data; 
reg crc5_valid; 
wire [4:0] crc5_result; 
reg [5:0] crc5_counter; 
//CRC16 Control Signals 
reg crc16_reset; 
reg crc16_enable; 
reg [6:0] crc16_count;//Used to count clk cycles when computing crc16 
reg [111:0] crc16_data_in;//Preload this reg with all data to be sent to crc16 [111] = MSB 
wire [15:0] crc16_out; 
reg crc16_valid; 
//Temperature Sensor Control Signals 
reg sensor_reset; 
reg sensor_enable; 
wire sensor_complete; 
wire [8:0] sensor_data; 
output sensor_rst_n; 
output sensor_clk_conv; 
inout sensor_dq; 
//PRESENT Block Cipher Control Signals 
reg present_enable; 
reg present_reset; 
reg [63:0] present_plaintext; 
reg [79:0] present_key; 
wire present_complete; 
wire [63:0] present_ciphertext; 
//Various Control Related Signals 
reg [15:0] curr_cmd;//Last received opcode, required because PIE decoder resets 
reg [15:0] slot_counter;//Tag position in response Queue, Gen2 section 6.3.2.4 
reg slot_counter_ready;//Flag indicating slot counter has been generated 
reg epc_retrieved;//Flag used to indicated we have retrieved EPCID during powerup, so we can move on to 
retrieving the PRESENT key 
wire[10:0] trcal;//Tag --> Reader calibration symbol, Gen2 section 6.3.1.2.8 
reg [10:0] trcal_value; 
wire[7:0] rtcal;//Reader --> Tag calibration symbol, Gen2 section 6.3.1.2.8 
reg [7:0] rtcal_value; 
reg dr;//Divide ratio, Gen2 section 6.3.1.2.8 
reg [1:0] m;//M value selects encoding type (FM0, Miller2, Miller4, Miller8) 
reg trext;//Select between long and short preamble 
reg [31:0] access_password;//32 bit access password, arrives from 2 16 bit ACCESS commands 
(6.3.2.11.3.6) 
reg access_req;//Indicates 1st of 2 access commands have been recieved 
//Backscatter control signals 
reg blf_enable;//Signal to enable the backscatter clock 
wire blf_clk;//Backscatter clock signal, Gen2 section 6.3.1.3.5 
reg blf_reset; 
reg [128:0] data_out;//Data to be transmitted to reader 
reg [7:0] num_tx_bits;//Number of data bits to be transmitted to the reader 
reg tx_enable; 
reg tx_reset; 
wire tx_complete;//Flag indicating data transmission complete 
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//In reply state, after RN16 is backscattered, raise this flag. Indicates that we are waiting for an ACK (or 
other command) 
reg waiting_ack; 
reg t1_passed;//Flag indicating that t1 min reponse delay has been satisfied, Gen2 table 6.13 
reg [7:0] t1_count;//Clock cycles since last command was decoded, used to calculate T1 
wire [5:0] tpri;//TRcal/DR, backscatter-link pulse-repetition interval 
//StoredPC is defined in section 6.3.2.1.2.2 in Gen2. It is used to indicate the length of EPCID, 
//as well as several other paramaters 
reg [15:0] stored_pc; 
reg [15:0] stored_crc;//Gen2 section 6.3.2.1.2.1 
reg [95:0] epc_id; 
//Used to verify Read/Write Commands 
reg [15:0] handle; 
//If no state changes for a certain amount of time, assume frozen and reset 
//When all bugs fixed, should not be needed 
reg [15:0] global_reset_count; 
reg global_reset_sig; 
reg [3:0] prev_state; 
integer i;//counter, used to load data in for loops 
reg [3:0] state;//FSM state register (Figure 6.19) 
//Gen2 state values 
parameter POWERUP   = 4'h0; 
parameter READY    = 4'h1; 
parameter ARBITRATE   = 4'h2; 
parameter REPLY    = 4'h3; 
parameter ACKNOWLEDGED  = 4'h4; 
parameter OPEN    = 4'h5; 
parameter SECURED   = 4'h6; 
parameter KILLED    = 4'h7; 
//Opcodes from Gen2 Table 6.18 
parameter QUERYREP   = 16'h0000; 
parameter ACK     = 16'h0001; 
parameter QUERY    = 16'h0008; 
parameter QUERYADJUST  = 16'h0009; 
parameter SELECT    = 16'h000A; 
parameter NAK     = 16'h00C0; 
parameter REQ_RN    = 16'h00C1; 
parameter READ    = 16'h00C2; 
parameter WRITE    = 16'h00C3; 
parameter KILL    = 16'h00C4; 
parameter LOCK    = 16'h00C5; 
parameter ACCESS   = 16'h00C6; 
always@(posedge clk128) begin 
if (!global_reset_sig) begin 
//FIXME, need to verify not killed 
state      <= POWERUP; 
pie_reset     <= 1; 
//Reset PRNG Controls 
prng_enable    <= 0; 
prng_reset     <= 1; 
n       <= 0; 
slot_counter    <= 0; 
slot_counter_ready  <= 0; 
crc5_reset     <= 0; 
crc5_enable    <= 0; 
receive_enable   <= 0; 
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//Encoder Controls 
num_tx_bits    <= 0; 
tx_enable     <= 0; 
waiting_ack    <= 0; 
//Reset Memory Controls 
mem_enable    <= 1; 
mem_write_enable  <= 0; 
mem_in     <= 0; 
mem_word     <= 0; 
crc16_valid    <= 0; 
//Temperature Sensor Controls 
sensor_reset   <= 1; 
sensor_enable   <= 0; 
//PRESENT Block Cipher Controls 
present_reset   <= 1; 
present_enable   <= 0; 
epc_id     <= 0; 
access_req    <= 0; 
//access_password  <= 0; 
epc_retrieved   <= 0; 
end 
else begin 
case (state) 
POWERUP: begin 
prng_reset   <= 1; 
prng_enable   <= 0; 
crc5_reset   <= 0; 
crc5_enable  <= 0; 
//FIXME need to make sure not killed 
pie_reset   <= 1; 
pie_enable   <= 0; 
clk256_enable  <= 0; 
receive_enable <= 0; 
blf_enable   <= 0; 
blf_reset   <= 1; 
//Encoder Controls 
num_tx_bits  <= 0; 
waiting_ack  <= 0; 
if (!sensor_complete) begin 
//Activate Temperature Sensor 
sensor_reset   <= 0; 
sensor_enable   <= 1; 
end 
else begin 
sensor_enable   <= 0; 
end 
if (!epc_retrieved) begin 
//Retreive EPCID from memory 
//I am simplifing this process. Please see section 6.3.2.1.2.2 for proper implementation of storedpc & epcid 
//After data has been retrieved, calculate and store StoredCRC 
case (mem_word) 
0: begin 
mem_enable    <= 1; 
mem_bank    <= 2'b01;//EPC Bank 
mem_write_enable  <= 0;//Read Mem 
mem_word <= mem_word + 1;//StoredPC in word 1 of EPC Bank 
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end 
1: begin 
stored_pc <= mem_out; 
mem_word <= mem_word + 1;//epcid is stored in words 2-6 of EPC Bank 
end 
2: begin 
epc_id[15:0] <= mem_out; 
mem_word <= mem_word + 1; 
end 
3: begin 
epc_id[31:16] <= mem_out; 
mem_word <= mem_word + 1; 
end 
4: begin 
epc_id[47:32] <= mem_out; 
mem_word <= mem_word + 1; 
end 
5: begin 
epc_id[63:48] <= mem_out; 
mem_word <= mem_word + 1; 
end 
6: begin 
epc_id[79:64] <= mem_out; 
mem_word <= mem_word + 1; 
//Reset CRC16 to calculate StoredCRC 
crc16_reset <= 1; 
end 
7: begin 
epc_id[95:80] <= mem_out; 
crc16_reset  <= 0; 
crc16_count  <= 111;//should always be #bits -1 
mem_word <= mem_word + 1; 
end 
8: begin 
//Load CRC16 DataIn 
for (i = 0; i < 96; i = i + 1) begin 
crc16_data_in[i] <= epc_id[i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
crc16_data_in[i+96] <= stored_pc[i]; 
end 
mem_word <= mem_word + 1; 
crc16_enable  <= 1; 
end 
9: begin 
//Calculate StoredCRC according to Appendix F 
if (crc16_count > 0) begin 
crc16_data_in <= crc16_data_in << 1; 
crc16_count <= crc16_count - 1; 
end 
else begin 
//Inverse of Q = StoredCRC 
//Technically this should be stored in EPC Bank Word 0 
stored_crc[0] <= !crc16_out[0]; 
stored_crc[1] <= !crc16_out[1]; 
stored_crc[2] <= !crc16_out[2]; 
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stored_crc[3] <= !crc16_out[3]; 
stored_crc[4] <= !crc16_out[4]; 
stored_crc[5] <= !crc16_out[5]; 
stored_crc[6] <= !crc16_out[6]; 
stored_crc[7] <= !crc16_out[7]; 
stored_crc[8] <= !crc16_out[8]; 
stored_crc[9] <= !crc16_out[9]; 
stored_crc[10] <= !crc16_out[10]; 
stored_crc[11] <= !crc16_out[11]; 
stored_crc[12] <= !crc16_out[12]; 
stored_crc[13] <= !crc16_out[13]; 
stored_crc[14] <= !crc16_out[14]; 
stored_crc[15] <= !crc16_out[15]; 
crc16_enable <= 0; 
epc_retrieved <= 1'b1; 
mem_word <= 0; 
mem_enable <= 0; 
end 
end 
default: begin 
state <= POWERUP; 
end 
endcase 
end 
else begin 
//EPCID has been read from memory, now fetch PRESENT key 
case (mem_word) 
0: begin 
mem_enable    <= 1; 
mem_bank    <= 2'b00;//RES bank 
mem_write_enable  <= 0;//Read Mem 
mem_word    <= 8;//PRESENT key is stored in words 8-12 
end 
8: begin 
present_key[15:00]  <= mem_out; 
mem_word     <= mem_word + 1; 
end 
9: begin 
present_key[31:16]  <= mem_out; 
mem_word     <= mem_word + 1; 
end 
10: begin 
present_key[47:32]  <= mem_out; 
mem_word     <= mem_word + 1; 
end 
11: begin 
present_key[63:48]  <= mem_out; 
mem_word     <= mem_word + 1; 
end 
12: begin 
present_key[79:64]  <= mem_out; 
mem_word     <= mem_word + 1; 
end 
13: begin 
mem_word     <= 0; 
mem_enable     <= 0; 



 

93 
 

state      <= READY; 
end 
endcase 
end 
end //POWERUP 
READY: begin 
//Activate Decoder 
if (pie_reset) begin 
pie_reset   <= 0; 
pie_enable   <= 1; 
clk256_enable  <= 1; 
receive_enable <= 1; 
end 
else if (pie_opcode_ready) begin 
case (curr_cmd)  
QUERY: begin 
state      <= ARBITRATE; 
slot_counter_ready  <= 0; 
mem_enable     <= 0; 
end 
default: begin 
//Don't reset until the entire command has been received 
if (pie_data_ready) begin 
state <= READY; 
pie_reset <= 1;//FIXME SELECT Command should have a different behavior 
end 
end 
endcase 
end 
//Fetch seed, iv, a0, & a1 values from memory and activate prng 
if (!prng_ready) begin 
if (!mem_enable) begin 
//Setup Memory Bank for Read 
mem_bank    <= 2'b11;//User Bank 
mem_write_enable  <= 0;//Read Mem 
mem_word    <= 0; 
mem_enable    <= 1; 
end 
else if (!prng_enable) begin 
//Fetch Seed and IV values for PRNG 
case (mem_word) 
0: begin 
prng_key[31:16]  <= mem_out; 
mem_word    <= mem_word + 1; 
end 
1: begin 
prng_key[15:0]  <= mem_out; 
mem_word    <= mem_word + 1; 
end 
2: begin 
prng_iv[31:16]  <= mem_out; 
mem_word    <= mem_word + 1; 
end 
3: begin 
prng_iv[15:0]   <= mem_out; 
mem_word    <= mem_word + 1; 
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end 
4: begin 
a0[31:16]   <= mem_out; 
mem_word    <= mem_word + 1; 
end 
5: begin 
a0[15:0]    <= mem_out; 
mem_word    <= mem_word + 1; 
end 
6: begin 
a1[31:16]   <= mem_out; 
mem_word    <= mem_word + 1; 
end 
7: begin 
a1[15:0]    <= mem_out; 
mem_word    <= mem_word + 1; 
end 
8: begin 
//Activate PRNG 
prng_reset   <= 0; 
prng_enable  <= 1; 
mem_word   <= 2; 
end 
endcase 
end 
end 
//prng ready 
else begin 
//Store PRN16, and store a0 & a1 in memory 
if (mem_enable) begin 
prng_enable <= 0; 
//Store Updated a0 & a1, see LAMED algorithm for more information 
case (mem_word) 
2: begin 
//Part of LAMED algorithm, 16 bit output = XOR of 32 bit MSB & LSB 
prng_16_out <= prng_32_out[31:16] ^ prng_32_out[15:0]; 
//Update a0 & a1 
if (!n) begin 
//Even N 
a0 <= a1 ^ prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
else begin 
//Odd N 
a0 <= a1 + prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
mem_word    <= mem_word + 1; 
n      <= !n; 
mem_bank    <= 2'b11;//User Bank 
end 
3: begin 
mem_write_enable  <= 1;//Write Mem 
mem_in    <= a0[31:16]; 
mem_word    <= mem_word + 1; 
end 
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4: begin 
mem_in    <= a0[15:0]; 
mem_word    <= mem_word + 1; 
end 
5: begin 
mem_in    <= a1[31:16]; 
mem_word    <= mem_word + 1; 
end 
6: begin 
mem_in    <= a1[15:0]; 
mem_word    <= mem_word + 1; 
end 
7: begin 
mem_enable    <= 0; 
mem_bank    <= 2'b01; 
end 
endcase 
end 
end 
end//READY 
ARBITRATE: begin 
//Upon Entering Arbitrate (meaning we received a Query Command), the following must be done: 
//Wait for PIE Decoder to finish gather data (pie_data_ready flag) 
//Wait for PRNG to finish 
//Get Query data (DR, M, Q), includes performing CRC5 check 
//Generate slot counter 
//After these have been done, reset the PIE decoder and wait for the next command 
//Wait for decoding of current command 
if (!pie_data_ready) begin 
state <= ARBITRATE; 
//This indicates that we have reset the decoder after receiving a Query Command 
if (pie_reset) begin 
pie_reset <= 0; 
end 
end 
else if (slot_counter_ready & slot_counter == 0) begin 
//Slot counter = 0 means reply 
state    <= REPLY; 
//Setup transmit FSM 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i] <= prng_16_out[15 - i];  
end 
data_out[16]  <= 1;//In both encoding, last symbol is always 1 
num_tx_bits  <= 17; 
blf_enable   <= 1; 
blf_reset   <= 0; 
tx_reset   <= 1; 
waiting_ack   <= 0; 
slot_counter_ready  <= 0;  
pie_reset <= 1; 
crc5_reset <= 1; 
end 
else begin 
//QUERY command data contains several useful values including DR, M, & Q 
case (curr_cmd) 
QUERY: begin 
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//Perform a CRC5 Check 
if (!crc5_reset & !crc5_enable) begin 
crc5_reset  <= 1; 
end 
else if (crc5_reset & !crc5_enable) begin 
crc5_reset  <= 0; 
crc5_enable <= 1; 
end 
else if (crc5_enable & !crc5_valid) begin 
//FIXME, this should timeout based on T2 
state <= ARBITRATE; 
end 
//Means we got a valid CRC for the Query Command 
else if (crc5_valid) begin 
if (!slot_counter_ready) begin 
//Q value bits will determine slot counter value 
case (pie_data[8:5]) 
0: slot_counter  <= {15'h0000, prng_16_out[0]}; 
1: slot_counter  <= {14'h0000, prng_16_out[1:0]}; 
2: slot_counter  <= {13'h0000, prng_16_out[2:0]}; 
3: slot_counter  <= {12'h000, prng_16_out[3:0]}; 
4: slot_counter  <= {11'h000, prng_16_out[4:0]}; 
5: slot_counter  <= {10'h000, prng_16_out[5:0]}; 
6: slot_counter  <= {9'h000, prng_16_out[6:0]}; 
7: slot_counter  <= {8'h00, prng_16_out[7:0]}; 
8: slot_counter  <= {7'h00, prng_16_out[8:0]}; 
9: slot_counter  <= {6'h00, prng_16_out[9:0]}; 
10: slot_counter  <= {5'h00, prng_16_out[10:0]}; 
11: slot_counter  <= {4'h0, prng_16_out[11:0]}; 
12: slot_counter  <= {3'h0, prng_16_out[12:0]}; 
13: slot_counter  <= {2'h0, prng_16_out[13:0]}; 
14: slot_counter  <= {1'h0, prng_16_out[14:0]}; 
15: slot_counter  <= prng_16_out[15:0]; 
endcase 
dr  <= pie_data[17]; 
m   <= pie_data[16:15]; 
trext <= pie_data[14]; 
//Sel, Session, & Target bits have not been accounted for. At present we are assuming we are always being 
communicated with 
slot_counter_ready <= 1; 
trcal_value <= trcal; 
crc5_enable <= 0;//CRC5 passed, disable CRC5 
crc5_reset <= 1; 
end 
end 
//With each QUERY command we will store the value from the temperature sensor in the RES memory 
bank word 4 
if (sensor_complete) begin 
if (!mem_enable) begin 
mem_bank  <= 2'b00;//Reserved bank 
mem_word  <= 4; 
mem_in  <= {5'h00, sensor_data};//FIXME, data may be backwards 
mem_enable  <= 1; 
end 
else begin 
mem_enable   <= 0; 
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sensor_reset  <= 1;//Lower sensor_complete flag 
sensor_enable <= 0; 
end 
end 
else begin 
end 
end//QUERY 
QUERYREP: begin 
slot_counter <= slot_counter - 1; 
pie_reset <= 1; //Reset the PIE decoder 
end 
QUERYADJUST: begin 
slot_counter <= slot_counter - 1; 
pie_reset <= 1; //Reset the PIE decoder 
end 
SELECT: begin 
state <= READY; 
pie_reset <= 1; //Reset the PIE decoder 
end 
default: begin 
//All other commands just return to arbitrate 
state <= ARBITRATE; 
pie_reset <= 1; 
end 
endcase 
end 
end//ARBITRATE 
REPLY: begin 
//Indicates we have backscattered RN16 and are waiting for ACK (or other command) 
if (waiting_ack) begin 
//Any operations that can be executed by only knowing the opcode is placed here (such as PRN generation) 
if (pie_opcode_ready) begin 
case (curr_cmd)  
ACK: begin 
//Must wait for data to be received to validate the RN16 value 
//Reset TX FSM 
state   <= REPLY; 
end 
QUERY: begin 
//Receiving a Query Cmd starts a new round, generate new RN16 & Slot Value 
//Since handling this is already built into the Arbitrate command, we will return there 
//FIXME, generate a new RN16 value **COULD PROBABLY JUST BUILD THIS INTO THE 
PIE_OPCODE_READY SINCE QUERY AND QUERYADJUST ALWAYS DO IT*** 
state    <= ARBITRATE; 
waiting_ack  <= 0; 
slot_counter_ready <= 0; 
end 
QUERYADJUST: begin 
//FIXME, generate a new RN16 value 
state    <= REPLY; //FIXME, should generate a new rn16 value, change q and if slot = 
0 then backscatter rn16, if not return to reply 
waiting_ack  <= 0; 
end 
default: begin 
//All other commands should send the tag to ARBITRATE 
state <= ARBITRATE; 
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end 
endcase 
end 
if (pie_data_ready) begin 
//Means we must have received an ACK command, so we need to verify the RN16 value 
if (pie_data[15:0] == prng_16_out) begin 
//Valid RN16, backscatter StoredPC, EPCID, and StoredCRC, then transition to ACK state 
if (!tx_complete) begin 
if (tx_reset & !tx_enable) begin 
num_tx_bits <= 128; 
blf_enable   <= 1; 
blf_reset   <= 0; 
//Load StoredPC, EPCID, & StoredCRC for transmission 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i] <= stored_pc[15 - i];  
end 
for(i = 0; i < 96; i = i + 1) begin 
data_out[i+16] <= epc_id[95 - i];  
end 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i+112] <= stored_crc[15 - i];  
end 
//Last bit always 1 
data_out[128] <= 1'b1; 
tx_reset   <= 0; 
end 
else if (t1_passed) begin 
tx_enable <= 1;//begin transmission after t1 
pie_enable <= 0;//disable receive during transmission 
end 
state <= REPLY; 
end 
else begin 
tx_reset  <= 1; 
tx_enable  <= 0; 
pie_reset <= 1; 
//Data has been backscattered, transition state 
state   <= ACKNOWLEDGED; 
prng_reset  <= 1; 
crc16_valid <= 0; 
end 
end 
else begin 
//Invalid RN16 
state   <= ARBITRATE; 
end 
end 
end 
else begin 
//Cannot Reply before T1, indicated by t1_passed flag 
if (tx_reset & !tx_enable) begin 
//Reset and enable the transmit FSM 
tx_reset <= 0; 
pie_reset <= 0; 
end 
else if (tx_complete) begin 
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waiting_ack  <= 1; 
tx_reset   <= 1; 
tx_enable   <= 0; 
state    <= REPLY; 
pie_enable    <= 1; 
end 
else if (t1_passed) begin 
tx_enable <= 1;//begin transmission after t1 
pie_enable <= 0;//disable receive during transmission 
end 
end 
end//REPLY 
ACKNOWLEDGED : begin 
//Enable PIE Decoder 
if (pie_reset) begin 
pie_reset <= 0; 
pie_enable <= 1; 
end 
if (pie_opcode_ready) begin 
case (curr_cmd)  
QUERY: begin 
state <= ARBITRATE; 
slot_counter_ready <= 0; 
end 
REQ_RN: begin 
prng_reset <= 0; 
prng_enable <= 1; 
end 
default: begin 
state <= ACKNOWLEDGED; 
end 
endcase 
end 
if (pie_data_ready) begin 
//See state transition table B.4 for more information 
case (curr_cmd)  
QUERYREP: begin 
state <= READY; 
end 
QUERYADJUST: begin 
state <= READY; 
end 
ACK: begin 
//Means we must have received an ACK command, so we need to verify the RN16 value 
if (pie_data[15:0] == prng_16_out) begin 
//Valid RN16 
state    <= ACKNOWLEDGED; 
num_tx_bits  <= 128; 
blf_enable   <= 1; 
blf_reset   <= 0; 
tx_reset   <= 1; 
//Load StoredPC, EPCID, & StoredCRC for transmission 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i] <= stored_pc[15 - i];  
end 
for(i = 0; i < 96; i = i + 1) begin 
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data_out[i+16] <= epc_id[95 - i];  
end 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i+112] <= stored_crc[15 - i];  
end 
data_out[128] <= 1'b1; 
end 
else begin 
//Invalid RN16 
state <= ARBITRATE; 
end 
end 
REQ_RN: begin 
if (!crc16_valid) begin 
//Must first check that RN16 is the same as the last RN16, then check the CRC16 value 
if (pie_data[31:16] == prng_16_out) begin 
//Valid RN16 
if (!crc16_enable & !crc16_reset) begin 
//Load CRC16 with REQ_RN opcode & RN16 
for (i = 0; i < 8; i = i + 1) begin 
crc16_data_in[i+104] <= curr_cmd[i]; 
end 
for (i = 0; i < 32; i = i + 1) begin 
crc16_data_in[i+72] <= pie_data[i]; 
end 
crc16_count <= 39; 
crc16_reset <= 1;//Preload FFFF 
end 
else if (crc16_reset & !crc16_enable) begin 
crc16_reset <= 0; 
crc16_enable <= 1; 
end 
else begin 
if (rtcal_value == 0) begin 
//We have disabled the CRC16 check, as it is not specifically required by Gen2 
//And at high speed we cannot meet T1 
//This code does perform the check, and could be used 
if (crc16_count > 0) begin 
crc16_count <= crc16_count - 1; 
crc16_data_in <= crc16_data_in << 1; 
if (crc16_count == 1) begin 
//Prepare memory banks for updating 
mem_word    <= 2; 
mem_enable    <= 0; 
mem_write_enable  <= 0; 
mem_bank    <= 2'b11;//User bank 
end 
state <= ACKNOWLEDGED; 
end 
else begin 
crc16_enable <= 0; 
//Method 1 Appendix F 
if (crc16_out == 16'h1D0F) begin 
//CRC16 passed 
crc16_valid <= 1; 
crc16_count <= 15; 
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end 
else begin//CRC Does not Match 
state <= ARBITRATE; 
end 
end 
end 
else begin 
mem_word    <= 2; 
mem_enable    <= 0; 
mem_write_enable  <= 0; 
mem_bank    <= 2'b11;//User bank 
crc16_enable <= 0; 
crc16_valid <= 1; 
crc16_count <= 15; 
end 
end 
end 
else begin 
//Invalid RN16 
state <= ACKNOWLEDGED; 
end 
end//!crc16_valid 
else begin 
if (prng_ready) begin 
if (mem_word == 2) begin 
//Update RN16 for backscatter 
prng_16_out <= prng_32_out[31:16] ^ prng_32_out[15:0]; 
end 
//crc16_count indicates we have the crc16 value 
else if (mem_word == 3 & crc16_count == 0) begin 
//Setup transmit FSM 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i] <= prng_16_out[15 - i];  
end 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i+16] <= !crc16_out[15 - i]; 
end 
data_out[32]  <= 1;//In both encoding, last symbol is always 1 
num_tx_bits  <= 33; 
blf_enable   <= 1; 
blf_reset   <= 0; 
//Used to verify Read/Write Commands 
handle    <= prng_16_out; 
end 
else if (mem_word > 3) begin 
//Cannot Reply before T1, indicated by t1_passed flag 
if (tx_reset & !tx_enable) begin 
//Reset and enable the transmit FSM 
tx_reset <= 0; 
end 
else if (tx_complete) begin 
tx_reset   <= 1; 
tx_enable   <= 0; 
state    <= OPEN; 
crc16_valid  <= 0; 
pie_enable    <= 1; 
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pie_reset  <= 1; 
prng_reset  <= 1; 
end 
else if (t1_passed) begin 
tx_enable <= 1;//begin transmission after t1 
pie_enable <= 0;//disable receive during transmission 
end 
end 
//Update a0 & a1 and store in mem, see LAMED algorithm for more information 
case (mem_word) 
2: begin 
if (!n) begin 
a0 <= a1 ^ prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
else begin 
a0 <= a1 + prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
mem_word    <= mem_word + 1; 
n      <= !n; 
end 
3: begin 
mem_write_enable  <= 1; 
mem_enable   <= 1; 
mem_in    <= a0[31:16]; 
if (crc16_count > 0) begin 
//Calculate CRC16 value for New RN16 and opcode 
if (!crc16_enable & !crc16_reset) begin 
//Load CRC16 with REQ_RN opcode & New RN16 
for (i = 0; i < 16; i = i + 1) begin 
crc16_data_in[i+96] <= prng_16_out[i]; 
end 
crc16_reset <= 1;//Preload FFFF 
end 
else if (crc16_reset & !crc16_enable) begin 
crc16_reset <= 0; 
crc16_enable <= 1; 
end 
else begin 
crc16_count <= crc16_count - 1; 
crc16_data_in <= crc16_data_in << 1; 
end 
end 
else begin 
mem_word    <= mem_word + 1; 
end 
end 
4: begin 
mem_in    <= a0[15:0]; 
mem_word    <= mem_word + 1; 
end 
5: begin 
mem_in    <= a1[31:16]; 
mem_word    <= mem_word + 1; 
end 
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6: begin 
mem_in    <= a1[15:0]; 
mem_word    <= mem_word + 1; 
end 
7: begin 
mem_enable    <= 0; 
end 
endcase 
end 
end 
end//REQ_RN 
SELECT: begin 
state <= READY; 
end 
default: begin 
state <= ARBITRATE; 
end 
endcase 
end 
end//ACKOWLEDGED 
OPEN: begin 
//Enable PIE Decoder 
if (pie_reset) begin 
pie_reset <= 0; 
pie_enable <= 1; 
end 
if (pie_opcode_ready & !pie_data_ready) begin 
case (curr_cmd) 
ACCESS: begin 
//Activate PRNG 
prng_reset  <= 0; 
prng_enable <= 1; 
//Prepare Memory for updating a0 & a1 
mem_word    <= 2; 
mem_enable    <= 0; 
mem_write_enable  <= 0; 
mem_bank    <= 2'b11;//User bank 
//Prepare CRC16 
crc16_count    <= 15; 
crc16_valid    <= 0; 
crc16_reset    <= 0; 
crc16_enable   <= 0; 
//Reset TX FSM 
tx_reset     <= 1; 
tx_enable    <= 0; 
end 
REQ_RN: begin 
//Activate PRNG 
prng_reset  <= 0; 
prng_enable <= 1; 
//Prepare Memory for updating a0 & a1 
mem_word    <= 2; 
mem_enable    <= 0; 
mem_write_enable  <= 0; 
mem_bank    <= 2'b11;//User bank 
//Prepare CRC16 
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crc16_count    <= 15; 
crc16_valid    <= 0; 
crc16_reset    <= 0; 
crc16_enable   <= 0; 
//Reset TX FSM 
tx_reset     <= 1; 
tx_enable    <= 0; 
end 
default: begin 
state <= OPEN; 
end 
endcase 
end 
if (pie_data_ready) begin 
case (curr_cmd) 
ACCESS: begin 
//Receiving an ACCESS command in OPEN state gives 1st half of access password, backscatter new 
RN16, and moves to SECURED state 
//Access password = password XOR rn16 
access_password[31:16] <= pie_data[47:32] ^ prng_16_prev; 
//Once PRNG is ready, update RN16, calculate CRC16, backscatter both, and update a0, a1 
if (prng_ready) begin 
//Update RN16 
prng_16_out <= prng_32_out[31:16] ^ prng_32_out[15:0]; 
//Calculate crc16 
if (!crc16_valid) begin 
if (crc16_count > 0) begin 
//Calculate CRC16 value for New RN16 and opcode 
if (!crc16_reset & !crc16_enable) begin 
crc16_reset <= 1;//Preload FFFF 
end 
else if (!crc16_enable) begin 
//Load CRC16 with new RN16 
for (i = 0; i < 16; i = i + 1) begin 
crc16_data_in[i+96] <= prng_16_out[i]; 
end 
crc16_reset  <= 0; 
crc16_enable  <= 1; 
end 
else begin 
crc16_count  <= crc16_count - 1; 
crc16_data_in  <= crc16_data_in << 1; 
end 
end 
else begin 
crc16_enable  <= 0; 
crc16_valid  <= 1; 
end 
end 
else begin 
//Setup TX FSM 
if (tx_reset & !tx_enable) begin 
//Prepare Data 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i]  <= prng_16_out[15 - i];  
end 
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for(i = 0; i < 16; i = i + 1) begin 
data_out[i+16] <= !crc16_out[15 - i]; 
end 
data_out[32]  <= 1;//In both encoding, last symbol is always 1 
num_tx_bits  <= 33; 
blf_enable   <= 1; 
blf_reset   <= 0; 
tx_reset <= 0; 
end 
else if (tx_complete) begin 
tx_reset   <= 1; 
tx_enable   <= 0; 
state    <= SECURED; 
crc16_valid  <= 0; 
pie_enable    <= 1; 
pie_reset   <= 1; 
access_req  <= 1; 
prng_reset  <= 1; 
end 
//Begin transmission after t1 
else if (t1_passed) begin 
tx_enable  <= 1; 
//Disable receive during transmission 
pie_enable  <= 0; 
end 
end 
//Update a0 & a1 and store in mem 
case (mem_word) 
2: begin 
if (!n) begin 
a0 <= a1 ^ prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
else begin 
a0 <= a1 + prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
mem_word    <= mem_word + 1; 
n      <= !n; 
end 
3: begin 
mem_write_enable  <= 1; 
mem_enable   <= 1; 
mem_in    <= a0[31:16]; 
mem_word    <= mem_word + 1; 
end 
4: begin 
mem_in    <= a0[15:0]; 
mem_word    <= mem_word + 1; 
end 
5: begin 
mem_in    <= a1[31:16]; 
mem_word    <= mem_word + 1; 
end 
6: begin 
mem_in    <= a1[15:0]; 



 

106 
 

mem_word    <= mem_word + 1; 
end 
7: begin 
mem_enable    <= 0; 
end 
endcase 
end 
end//ACCESS 
REQ_RN: begin 
//REQ_RN requires us to generate a new RN16, calculate a CRC16, and backscatter RN16 and CRC16 
//FIXME, should verify RN16 is what we sent 
//Once PRNG is ready, update RN16, calculate CRC16, backscatter both, and update a0, a1 
if (prng_ready) begin 
//Update RN16 
prng_16_out  <= prng_32_out[31:16] ^ prng_32_out[15:0]; 
prng_16_prev  <= prng_32_out[31:16] ^ prng_32_out[15:0]; 
//Calculate crc16 
if (!crc16_valid) begin 
if (crc16_count > 0) begin 
//Calculate CRC16 value for New RN16 and opcode 
if (!crc16_reset & !crc16_enable) begin 
crc16_reset <= 1;//Preload FFFF 
end 
else if (!crc16_enable) begin 
//Load CRC16 with new RN16 
for (i = 0; i < 16; i = i + 1) begin 
crc16_data_in[i+96] <= prng_16_out[i]; 
end 
crc16_reset  <= 0; 
crc16_enable  <= 1; 
end 
else begin 
crc16_count  <= crc16_count - 1; 
crc16_data_in  <= crc16_data_in << 1; 
end 
end 
else begin 
crc16_enable  <= 0; 
crc16_valid  <= 1; 
end 
end 
else begin 
//Setup TX FSM 
if (tx_reset & !tx_enable) begin 
//Prepare Data 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i]  <= prng_16_out[15 - i];  
end 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i+16] <= !crc16_out[15 - i]; 
end 
data_out[32]  <= 1;//In both encoding, last symbol is always 1 
num_tx_bits  <= 33; 
blf_enable   <= 1; 
blf_reset   <= 0; 
tx_reset <= 0; 



 

107 
 

end 
else if (tx_complete) begin 
tx_reset   <= 1; 
tx_enable   <= 0; 
state    <= OPEN; 
crc16_valid  <= 0; 
pie_enable    <= 1; 
pie_reset   <= 1; 
end 
//Begin transmission after t1 
else if (t1_passed) begin 
tx_enable  <= 1; 
//Disable receive during transmission 
pie_enable  <= 0; 
end 
end 
//Update a0 & a1 and store in mem 
case (mem_word) 
2: begin 
if (!n) begin 
a0 <= a1 ^ prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
else begin 
a0 <= a1 + prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
mem_word    <= mem_word + 1; 
n      <= !n; 
end 
3: begin 
mem_write_enable  <= 1; 
mem_enable   <= 1; 
mem_in    <= a0[31:16]; 
mem_word    <= mem_word + 1; 
end 
4: begin 
mem_in    <= a0[15:0]; 
mem_word    <= mem_word + 1; 
end 
5: begin 
mem_in    <= a1[31:16]; 
mem_word    <= mem_word + 1; 
end 
6: begin 
mem_in    <= a1[15:0]; 
mem_word    <= mem_word + 1; 
end 
7: begin 
mem_enable    <= 0; 
end 
endcase 
end 
end//REQ_RN 
READ: begin 
//First validate RN16 (handle) Matches 
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if (pie_data[31:16] == handle) begin 
//Valid Handle 
//READ Command is variable length command so different bits are required 
//For now we are assumming only 50 bits of READ data 
if (!mem_enable) begin 
case(pie_data_bits) 
50: begin 
//FIXME, need to verify this address exists using starting and max 
mem_bank <= pie_data[49:48];//MemBank 
mem_word <= pie_data[47:40];//WordPtr 
mem_max  <= pie_data[47:40] + pie_data[39:32];//WordCount 
mem_count <= 0; 
mem_enable   <= 1; 
mem_write_enable  <= 0; 
data_out    <= 0;//clear tx data 
end 
endcase 
end 
else begin 
//Load Memory and Handle into CRC16 data in 
if (mem_word < mem_max) begin 
//Load CRC16 
case (mem_count) 
0: begin 
crc16_data_in[111]   <= 1'b0;//Reply starts with 0 
crc16_data_in[110:95]  <= mem_out; 
end 
1: begin 
crc16_data_in[94:79]  <= mem_out; 
end 
2: begin 
crc16_data_in[78:63]  <= mem_out; 
end 
3: begin 
crc16_data_in[62:47]  <= mem_out; 
end 
4: begin 
crc16_data_in[46:31]  <= mem_out; 
end 
//FIXME, because of CRC16 data_in length, max of 4 words can be read 
endcase 
mem_word <= mem_word + 1; 
mem_count <= mem_count + 1; 
crc16_enable  <= 0; 
crc16_reset  <= 1; 
crc16_valid  <= 0; 
end 
else begin 
if (!crc16_enable) begin 
//Load Handle 
case (mem_count) 
1: begin 
crc16_data_in[94:79]  <= handle; 
crc16_count     <= 32; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
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//Load data fetched from memory 
for (i = 0; i < 17; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 
2: begin 
crc16_data_in[78:63]  <= handle; 
crc16_count     <= 48; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
//Load data fetched from memory 
for (i = 0; i < 33; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 
3: begin 
crc16_data_in[62:47]  <= handle; 
crc16_count     <= 64; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
for (i = 0; i < 49; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 
4: begin 
crc16_data_in[46:31]  <= handle; 
crc16_count     <= 80; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
//Load data fetched from memory 
for (i = 0; i < 65; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 
5: begin 
crc16_data_in[30:15]  <= handle; 
crc16_count     <= 96; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
//Load data fetched from memory 
for (i = 0; i < 81; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 
endcase 
end 
else begin 
if (!crc16_valid) begin 
if (crc16_count > 0) begin 
crc16_count <= crc16_count - 1; 
crc16_data_in <= crc16_data_in << 1; 
end 
else begin 
crc16_valid <= 1; 
//May be redundant 
tx_reset  <= 1; 
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tx_enable  <= 0; 
//Load Handle & CRC16 
case (mem_count) 
1: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+17] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+33] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
data_out[49] <= 1'b1; 
num_tx_bits <= 50; 
end 
2: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+33] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+49] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
data_out[65] <= 1'b1; 
num_tx_bits <= 66; 
end 
3: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+49] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+65] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
data_out[81] <= 1'b1; 
num_tx_bits <= 82; 
end 
4: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+65] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+81] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
data_out[97] <= 1'b1; 
num_tx_bits <= 98; 
end 
5: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+81] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+97] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
data_out[113] <= 1'b1; 
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num_tx_bits <= 114; 
end 
endcase 
end 
end//if !crc16_valid 
else begin 
if (!tx_complete) begin 
if (tx_reset & !tx_enable) begin 
blf_enable   <= 1; 
blf_reset   <= 0; 
tx_reset   <= 0; 
end 
else if (t1_passed) begin 
tx_enable <= 1;//begin transmission after t1 
pie_enable <= 0;//disable receive during transmission 
end 
end 
else begin 
//Reset tx fsm 
tx_reset  <= 1; 
tx_enable  <= 0; 
//Reset decoder 
if (!pie_reset & !pie_enable) begin 
pie_reset <= 1; 
end 
else begin 
pie_reset <= 1; 
pie_enable <= 1; 
end 
//Clean up additional signals 
crc16_valid <= 0; 
mem_enable  <= 0; 
blf_enable  <= 0; 
blf_reset   <= 1; 
end 
end 
end 
end 
end 
end 
else begin 
//Invalid Handle 
state <= OPEN; 
end 
end //READ 
endcase 
end//pie_data_ready 
else begin 
state <= OPEN; 
end 
end//OPEN 
SECURED: begin 
//Enable PIE Decoder 
if (pie_reset) begin 
pie_reset <= 0; 
pie_enable <= 1; 
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end 
if (pie_opcode_ready & !pie_data_ready) begin 
case (curr_cmd) 
ACCESS: begin 
//Activate PRNG 
prng_reset  <= 0; 
prng_enable <= 1; 
//Prepare Memory for updating a0 & a1 
mem_word    <= 2; 
mem_enable    <= 0; 
mem_write_enable  <= 0; 
mem_bank    <= 2'b11;//User bank 
//Prepare CRC16 
crc16_count    <= 15; 
crc16_valid    <= 0; 
crc16_reset    <= 0; 
crc16_enable   <= 0; 
//Reset TX FSM 
tx_reset     <= 1; 
tx_enable    <= 0; 
end 
REQ_RN: begin 
//Activate PRNG 
prng_reset  <= 0; 
prng_enable <= 1; 
//Prepare Memory for updating a0 & a1 
mem_word    <= 2; 
mem_enable    <= 0; 
mem_write_enable  <= 0; 
mem_bank    <= 2'b11;//User bank 
//Prepare CRC16 
crc16_count    <= 15; 
crc16_valid    <= 0; 
crc16_reset    <= 0; 
crc16_enable   <= 0; 
//Reset TX FSM 
tx_reset     <= 1; 
tx_enable    <= 0; 
end 
endcase 
end 
if (pie_data_ready) begin 
case (curr_cmd) 
ACCESS: begin 
//Receiving an ACCESS command in SECURED state could give either 16 MSB or 16 LSB of access 
password depending on how we got here 
//Need to backscatter new RN16 & CRC16 
//FIXME, should verify RN16 is what we sent 
if (!access_req) begin 
//Access password = password XOR rn16 
access_password[31:16]  <= pie_data[47:32] ^ prng_16_prev; 
end 
else begin 
access_password[15:0]  <= pie_data[47:32] ^ prng_16_prev; 
end 
//Once PRNG is ready, update RN16, calculate CRC16, backscatter both, and update a0, a1 
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if (prng_ready) begin 
//Update RN16 
prng_16_out <= prng_32_out[31:16] ^ prng_32_out[15:0]; 
//Calculate crc16 
if (!crc16_valid) begin 
if (crc16_count > 0) begin 
//Calculate CRC16 value for New RN16 and opcode 
if (!crc16_reset & !crc16_enable) begin 
crc16_reset <= 1;//Preload FFFF 
end 
else if (!crc16_enable) begin 
//Load CRC16 with new RN16 
for (i = 0; i < 16; i = i + 1) begin 
crc16_data_in[i+96] <= prng_16_out[i]; 
end 
crc16_reset  <= 0; 
crc16_enable  <= 1; 
end 
else begin 
crc16_count  <= crc16_count - 1; 
crc16_data_in  <= crc16_data_in << 1; 
end 
end 
else begin 
crc16_enable  <= 0; 
crc16_valid  <= 1; 
end 
end 
else begin 
//Setup TX FSM 
if (tx_reset & !tx_enable) begin 
//Prepare Data 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i]  <= prng_16_out[15 - i];  
end 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i+16] <= !crc16_out[15 - i]; 
end 
data_out[32]  <= 1;//In both encoding, last symbol is always 1 
num_tx_bits  <= 33; 
blf_enable   <= 1; 
blf_reset   <= 0; 
tx_reset <= 0; 
end 
else if (tx_complete) begin 
tx_reset   <= 1; 
tx_enable   <= 0; 
state    <= SECURED; 
crc16_valid  <= 0; 
pie_enable    <= 1; 
pie_reset   <= 1; 
prng_reset  <= 1; 
access_req  <= 1; 
end 
//Begin transmission after t1 
else if (t1_passed) begin 
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tx_enable  <= 1; 
//Disable receive during transmission 
pie_enable  <= 0; 
end 
end 
//Update a0 & a1 and store in mem 
case (mem_word) 
2: begin 
if (!n) begin 
a0 <= a1 ^ prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
else begin 
a0 <= a1 + prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
mem_word    <= mem_word + 1; 
n      <= !n; 
end 
3: begin 
mem_write_enable  <= 1; 
mem_enable   <= 1; 
mem_in    <= a0[31:16]; 
mem_word    <= mem_word + 1; 
end 
4: begin 
mem_in    <= a0[15:0]; 
mem_word    <= mem_word + 1; 
end 
5: begin 
mem_in    <= a1[31:16]; 
mem_word    <= mem_word + 1; 
end 
6: begin 
mem_in    <= a1[15:0]; 
mem_word    <= mem_word + 1; 
end 
7: begin 
mem_enable    <= 0; 
end 
endcase 
end 
end//ACCESS 
REQ_RN: begin 
//REQ_RN requires us to generate a new RN16, calculate a CRC16, and backscatter RN16 and CRC16 
//FIXME, should verify RN16 is what we sent 
//Once PRNG is ready, update RN16, calculate CRC16, backscatter both, and update a0, a1 
if (prng_ready) begin 
//Update RN16 
prng_16_out  <= prng_32_out[31:16] ^ prng_32_out[15:0]; 
prng_16_prev  <= prng_32_out[31:16] ^ prng_32_out[15:0]; 
//Calculate crc16 
if (!crc16_valid) begin 
if (crc16_count > 0) begin 
//Calculate CRC16 value for New RN16 and opcode 
if (!crc16_reset & !crc16_enable) begin 
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crc16_reset <= 1;//Preload FFFF 
end 
else if (!crc16_enable) begin 
//Load CRC16 with new RN16 
for (i = 0; i < 16; i = i + 1) begin 
crc16_data_in[i+96] <= prng_16_out[i]; 
end 
crc16_reset  <= 0; 
crc16_enable  <= 1; 
end 
else begin 
crc16_count  <= crc16_count - 1; 
crc16_data_in  <= crc16_data_in << 1; 
end 
end 
else begin 
crc16_enable  <= 0; 
crc16_valid  <= 1; 
end 
end 
else begin 
//Setup TX FSM 
if (tx_reset & !tx_enable) begin 
//Prepare Data 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i]  <= prng_16_out[15 - i];  
end 
for(i = 0; i < 16; i = i + 1) begin 
data_out[i+16] <= !crc16_out[15 - i]; 
end 
data_out[32]  <= 1;//In both encoding, last symbol is always 1 
num_tx_bits  <= 33; 
blf_enable   <= 1; 
blf_reset   <= 0; 
tx_reset <= 0; 
end 
else if (tx_complete) begin 
tx_reset   <= 1; 
tx_enable   <= 0; 
state    <= SECURED; 
crc16_valid  <= 0; 
pie_enable    <= 1; 
pie_reset   <= 1; 
prng_reset  <= 1; 
end 
//Begin transmission after t1 
else if (t1_passed) begin 
tx_enable  <= 1; 
//Disable receive during transmission 
pie_enable  <= 0; 
end 
end 
//Update a0 & a1 and store in mem 
case (mem_word) 
2: begin 
if (!n) begin 
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a0 <= a1 ^ prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
else begin 
a0 <= a1 + prng_iv; 
a1 <= prng_32_out + prng_key; 
end 
mem_word    <= mem_word + 1; 
n      <= !n; 
end 
3: begin 
mem_write_enable  <= 1; 
mem_enable   <= 1; 
mem_in    <= a0[31:16]; 
mem_word    <= mem_word + 1; 
end 
4: begin 
mem_in    <= a0[15:0]; 
mem_word    <= mem_word + 1; 
end 
5: begin 
mem_in    <= a1[31:16]; 
mem_word    <= mem_word + 1; 
end 
6: begin 
mem_in    <= a1[15:0]; 
mem_word    <= mem_word + 1; 
end 
7: begin 
mem_enable    <= 0; 
end 
endcase 
end 
end//REQ_RN 
READ: begin 
//First validate RN16 (handle) Matches 
if (pie_data[31:16] == handle) begin 
//Valid Handle 
//READ Command is variable length command so different bits are required 
//For now we are assumming only 50 bits of READ data 
if (!mem_enable) begin 
case(pie_data_bits) 
50: begin 
//FIXME, need to verify this address exists using starting and max 
mem_bank <= pie_data[49:48];//MemBank 
mem_word <= pie_data[47:40];//WordPtr 
mem_max  <= pie_data[47:40] + pie_data[39:32];//WordCount 
mem_count <= 0; 
mem_enable   <= 1; 
mem_write_enable  <= 0; 
data_out    <= 0;//clear tx data 
end 
endcase 
end 
else begin 
//Load Memory and Handle into CRC16 data in 
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if (mem_word < mem_max) begin 
//Load CRC16 
case (mem_count) 
0: begin 
crc16_data_in[111]   <= 1'b0;//Reply starts with 0 
crc16_data_in[110:95]  <= mem_out; 
present_reset    <= 1;//PRESENT may be used, so premptively reset and 
disable 
present_enable    <= 0; 
end 
1: begin 
crc16_data_in[94:79]  <= mem_out; 
end 
2: begin 
crc16_data_in[78:63]  <= mem_out; 
end 
3: begin 
crc16_data_in[62:47]    <= mem_out; 
//Load sensor data into PRESENT 
present_plaintext[63:16] <= crc16_data_in[110:63]; 
present_plaintext[15:00] <= mem_out; 
//This represents the XOR of the present key and TRNG from the reader 
//Due to limitations of the reader software we must emulate this using 
//the 32 bit access password, expanded to 80 bits through duplication 
present_key[79:48] <= present_key[79:48] ^ access_password; 
present_key[47:16] <= present_key[47:16] ^ access_password; 
present_key[15:00] <= present_key[15:00] ^ access_password[31:16]; 
end 
4: begin 
crc16_data_in[46:31]  <= mem_out; 
end 
//FIXME, because of CRC16 data_in length, max of 4 words can be read 
endcase 
mem_word   <= mem_word + 1; 
mem_count   <= mem_count + 1; 
crc16_enable  <= 0; 
crc16_reset  <= 1; 
crc16_valid  <= 0; 
end 
else begin 
if (!crc16_enable) begin 
//Load Handle 
case (mem_count) 
1: begin 
crc16_data_in[94:79]  <= handle; 
crc16_count     <= 32; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
//Load data fetched from memory 
for (i = 0; i < 17; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 
2: begin 
crc16_data_in[78:63]  <= handle; 
crc16_count     <= 48; 
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crc16_enable     <= 1; 
crc16_reset     <= 0; 
//Load data fetched from memory 
for (i = 0; i < 33; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 
3: begin 
crc16_data_in[62:47]  <= handle; 
crc16_count     <= 64; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
for (i = 0; i < 49; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 
4: begin 
//If we are reading sensor data from the secure state we need to encrypt the data 
if (mem_bank == 2'b00 & mem_max == 8) begin 
if (present_complete) begin 
crc16_data_in[110:47] <= present_ciphertext; 
data_out[0] <= 0; 
//Load PRESENT data for transmit 
for (i = 1; i < 65; i = i + 1) begin 
data_out[i] <= present_ciphertext[64-i]; 
end 
crc16_count     <= 80; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
end 
else begin 
present_reset    <= 0; 
present_enable    <= 1; 
end 
end 
else begin 
crc16_count     <= 80; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
//Load data fetched from memory 
for (i = 0; i < 65; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 
crc16_data_in[46:31]  <= handle; 
end 
5: begin 
crc16_data_in[30:15]  <= handle; 
crc16_count     <= 96; 
crc16_enable     <= 1; 
crc16_reset     <= 0; 
//Load data fetched from memory 
for (i = 0; i < 81; i = i + 1) begin 
data_out[i] <= crc16_data_in[111-i]; 
end 
end 



 

119 
 

endcase 
end 
else begin 
if (!crc16_valid) begin 
if (crc16_count > 0) begin 
crc16_count <= crc16_count - 1; 
crc16_data_in <= crc16_data_in << 1; 
end 
else begin 
crc16_valid <= 1; 
//May be redundant 
tx_reset  <= 1; 
tx_enable  <= 0; 
//Load Handle & CRC16 
case (mem_count) 
1: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+17] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+33] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
data_out[49] <= 1'b1; 
num_tx_bits <= 50; 
end 
2: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+33] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+49] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
data_out[65] <= 1'b1; 
num_tx_bits <= 66; 
end 
3: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+49] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+65] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
data_out[81] <= 1'b1; 
num_tx_bits <= 82; 
end 
4: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+65] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+81] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
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data_out[97] <= 1'b1; 
num_tx_bits <= 98; 
end 
5: begin 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+81] <= handle[15-i]; 
end 
for (i = 0; i < 16; i = i + 1) begin 
data_out[i+97] <= !crc16_out[15-i]; 
end 
//Last bit is always 1 
data_out[113] <= 1'b1; 
num_tx_bits <= 114; 
end 
endcase 
end 
end//if !crc16_valid 
else begin 
if (!tx_complete) begin 
if (tx_reset & !tx_enable) begin 
blf_enable   <= 1; 
blf_reset   <= 0; 
tx_reset   <= 0; 
end 
else if (t1_passed) begin 
tx_enable <= 1;//begin transmission after t1 
pie_enable <= 0;//disable receive during transmission 
end 
end 
else begin 
//Reset tx fsm 
tx_reset  <= 1; 
tx_enable  <= 0; 
//Reset decoder 
if (!pie_reset & !pie_enable) begin 
pie_reset <= 1; 
end 
else begin 
pie_reset <= 1; 
pie_enable <= 1; 
end 
//Clean up additional signals 
crc16_valid <= 0; 
mem_enable  <= 0; 
blf_enable  <= 0; 
blf_reset   <= 1; 
//Reset the key to the original value 
present_key[79:48] <= present_key[79:48] ^ access_password; 
present_key[47:16] <= present_key[47:16] ^ access_password; 
present_key[15:00] <= present_key[15:00] ^ access_password[31:16]; 
end 
end 
end 
end 
end 
end 
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else begin 
//Invalid Handle 
state <= SECURED; 
end 
end //READ 
endcase 
end//pie_data_ready 
else begin 
state <= SECURED; 
end 
end 
default: begin 
state <= POWERUP; 
mem_bank <= 2'b01; 
end 
endcase 
end 
end//always 
always @(posedge pie_opcode_ready) begin 
//After receiving opcode from PIE decoder load into curr_cmd reg 
curr_cmd <= pie_opcode; 
rtcal_value <= rtcal; 
end 
//CRC5 Control Logic 
always @ (posedge clk128) begin 
if (crc5_reset) begin 
//Load Query Command and data 
crc5_data  <= {4'b1000, pie_data[17:0]}; 
crc5_counter <= 0; 
crc5_valid  <= 0; 
end 
else if (crc5_enable & crc5_counter < 22) begin 
crc5_data  <= crc5_data << 1; 
crc5_counter <= crc5_counter + 1; 
end 
else if (crc5_counter == 22) begin 
if (crc5_result == 0) begin 
crc5_valid <= 1; 
end 
end 
end 
//T1 control logic 
always @ (posedge clk128) begin 
if (!por) begin 
t1_count <= 0; 
end 
else if (t1_count == 0 & pie_data_ready) begin //Start counting T1 from the start of the data_ready flag 
t1_count <= t1_count + 1; 
end 
else if (t1_count > 0 & !t1_passed) begin //Keep counting until t1 is reached (based on t1_passed flag) 
t1_count <= t1_count + 1; 
end 
else if (t1_passed) begin 
if (pie_opcode_ready) begin 
t1_count <= t1_count; 
end 
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else begin 
t1_count <= 0; 
end 
end 
//rtcal_value must be divided by 2 to convert from sampleclk to dig clk 
if (rtcal_value/2 > 10*tpri) begin 
if (t1_count >= rtcal_value/2) begin 
t1_passed <= 1; 
end 
else begin 
t1_passed <= 0; 
end 
end 
else begin 
if (t1_count >= 10*tpri) begin 
t1_passed <= 1; 
end 
else begin 
t1_passed <= 0; 
end 
end 
end 
//Global Reset Controls 
//Basically this is a counter that waits and if our fsm state does not change 
//it will time out and reset the FSM, we are assuming that we are frozen. 
always @ (posedge clk128) begin 
if (!por) begin 
global_reset_sig <= 0; 
global_reset_count <= 0; 
prev_state <= POWERUP; 
end 
else if (por & state == POWERUP) begin 
global_reset_sig <= 1; 
end 
else if (por & global_reset_count < 32767) begin 
if (prev_state == state) begin 
global_reset_count <= global_reset_count + 1; 
end 
else begin 
global_reset_count <= 0; 
end 
prev_state <= state; 
end 
else begin 
global_reset_count <= 0; 
global_reset_sig <= 0;//Timeout 
end 
end 
//Instantiate all required subblocks 
tpri_logic tpri_logic_0(.dr(dr),  
.trcal_value(trcal_value),  
.tpri(tpri) 
); 
mem_banks memory (   .reset(mem_reset),  
.enable(mem_enable),  
.data_out(mem_out),  
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.write_enable(mem_write_enable),  

.bank(mem_bank),  

.data_in(mem_in),  

.word(mem_word),  

.clk(clk128) 
); 
.data_in(demod_data),  
.enable(pie_enable), 
.reset(pie_reset), 
.op_code_ready(pie_opcode_ready), 
.op_code(pie_opcode), 
.data_ready(pie_data_ready), 
.data(pie_data), 
.query_received(pie_query_received), 
.trcal(trcal), 
.rtcal(rtcal), 
.data_bits(pie_data_bits) 
); 
lamed prng_0(    .clk(clk128),  
.enable(prng_enable),  
.reset(prng_reset),  
.key(a0),  
.iv(a1),  
.out(prng_32_out),  
.data_ready(prng_ready) 
); 
crc5 crc5_0(    .clk(clk128),  
.enable(crc5_enable),  
.reset(crc5_reset),  
.data_in(crc5_data[21]),  
.q(crc5_result) 
); 
crc16 crc16_0(    .clk(clk128),  
.enable(crc16_enable),  
.reset(crc16_reset),  
.data_in(crc16_data_in[111]),  
.q(crc16_out) 
); 
blf_divider blf_div_0(  .clk(clk256), 
.enable(blf_enable), 
.dr(dr),  
.trcal(trcal_value),  
.blf_clk(blf_clk), 
.reset(blf_reset) 
); 
.num_bits(num_tx_bits),  
.trext(trext),  
.tx_data(data_out),  
.tx_complete(tx_complete),  
.enable(tx_enable),  
.data_out(transmit),  
.m(m), 
.reset(tx_reset) 
); 
ds1620 temp_sensor_0 (  .enable(sensor_enable), 
.reset(sensor_reset), 
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.clk256(clk256), 

.temperature_reading(sensor_data), 

.rst_n(sensor_rst_n), 

.dq(sensor_dq), 

.clk_conv(sensor_clk_conv), 

.temp_ready(sensor_complete) 
); 
present80 present_0 ( .enable(present_enable), 
.reset(present_reset), 
.clk(clk128), 
.plaintext(present_plaintext), 
.key(present_key), 
.ciphertext(present_ciphertext), 
.complete(present_complete) 
); 
endmodule 
///////IMPLEMENTATION NOTES////////////////////////////////////////////////////////////////// 
// Commands not supported : Kill, Write 
// Commands partially supported: Read, QueryAdjust 
// T2 is not supported, Gen2 table 6.13. Should not be a problem if the reader is compliant 
/////////////////////////////////////////////////////////////////////////////////////////////  
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APPENDIX J 

DS1620 TEMPERATURE SENSOR VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    14:00:41 06/02/2010  
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    ds1620 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: Code used to retrieve a single 9 bit temperature reading  
// from a DS1620 temperature sensor. See datasheet for more information 
////////////////////////////////////////////////////////////////////////////////// 
module ds1620(temperature_reading, enable, reset, clk256, clk_conv, dq, rst_n, temp_ready); 
input enable; 
input reset; 
inout dq;//Data I/O, all data sent LSB first 
output reg clk_conv;//Clock used to drive sensor 
output reg rst_n; 
output reg [8:0] temperature_reading;//Temperature output from sensor 
output reg temp_ready;//Flag used to indicate temperature has been read 
reg [7:0] data_out;//Data to be sent to sensor 
reg [2:0] state; 
reg byte_count;//Tracks which command has been sent between START_CONVERT_T (!byte_count) and 
READ_TEMPERATURE (byte_count) 
reg [3:0] bit_count;//Tracks bits sent & received 
reg [2:0] clk_count;//Used to ensure data is shifted before clk_conv is raised to latch data 
reg mode;//Determines TX (transmit) or RX (receive) mode 
parameter TX = 1'b1; 
parameter RX = 1'b0; 
//FSM state values 
parameter [2:0] START   = 3'b000; 
parameter [2:0] LOAD_DATA  = 3'b001; 
parameter [2:0] TX_BYTE  = 3'b010; 
parameter [2:0] RX_TEMP  = 3'b011; 
parameter [2:0] STOP    = 3'b100; 
//Sensor command values from DS1620 datasheet 
parameter [7:0] READ_TEMPERATURE = 8'hAA; 
parameter [7:0] START_CONVERT_T  = 8'hEE; 
always @ (posedge clk256 or posedge reset) begin 
if (reset) begin 
rst_n      <= 0; 
clk_conv     <= 1; 
byte_count     <= 0; 
bit_count     <= 0; 
clk_count     <= 0; 
temp_ready     <= 0; 
state      <= START; 
temperature_reading  <= 0; 
end 
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else if (enable) begin 
case (state) 
START: begin 
rst_n <= 1;//Raise rst_n to begin data transfer 
mode  <= TX; 
state <= LOAD_DATA; 
end//START 
LOAD_DATA: begin//First START_CONVERT_T is sent, reset is toggled, and READ_TEMPERATURE 
is sent, then data is received 
case(byte_count) 
0: begin 
data_out <= START_CONVERT_T; 
end 
1: begin 
data_out <= READ_TEMPERATURE; 
end 
endcase 
state <= TX_BYTE; 
end//LOAD_DATA 
TX_BYTE: begin//Shift out data over DQ pin 
case(clk_count) 
0: begin 
clk_conv  <= 0;//lower output clk 
clk_count  <= clk_count + 1; 
end 
1: begin 
if (bit_count > 0) begin 
data_out <= {1'b0, data_out[7:1]};//Right shift 
end 
clk_count  <= clk_count + 1; 
end 
2: begin 
clk_conv  <= 1;//Raise output clk to latch data in sensor 
clk_count  <= clk_count + 1; 
end 
3: begin 
if (bit_count < 7) begin 
state   <= TX_BYTE; 
bit_count  <= bit_count + 1; 
clk_count  <= 0; 
end 
else if (!byte_count) begin 
state   <= STOP;//Toggle rst_n after sending START_CONVERT_T command 
bit_count  <= 0; 
clk_count  <= 0; 
end 
else begin 
state   <= RX_TEMP;//Receive temperature value after sending READ_TEMPERATURE 
command 
bit_count  <= 0; 
mode   <= RX; 
clk_count  <= 2; 
end 
end 
endcase 
end//TX_BYTE 
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RX_TEMP: begin//Receive 9 bit temperature reading 
case(clk_count) 
0: begin 
clk_conv   <= 1; 
temperature_reading  <= {dq, temperature_reading[8:1]};//shift in value 
clk_count   <= clk_count + 1; 
end 
1: begin 
clk_count   <= clk_count + 1; 
end 
2: begin 
clk_conv   <= 0; 
clk_count   <= clk_count + 1; 
end 
3: begin 
clk_count   <= 0; 
if (bit_count < 9) begin 
state   <= RX_TEMP;//Continue sampling until all 9 bits have been clocked 
bit_count  <= bit_count + 1; 
end 
else begin 
state   <= STOP;//After all bits have been received hold value 
bit_count  <= 0; 
end 
end 
endcase 
end//RX_TEMP 
STOP: begin//First time we enter STOP, toggle reset, 2nd time hold value and raise temp_ready flag 
rst_n    <= 0; 
if (!byte_count) begin 
state   <= START; 
byte_count  <= byte_count + 1; 
end 
else begin 
state   <= STOP; 
temp_ready  <= 1; 
end 
end//STOP 
endcase 
end 
end 
assign dq = (mode) ? data_out[0] : 1'bz;//data_out[0] is the bit currently being transmitted to the sensor 
endmodule  



 

128 
 

APPENDIX K 

MEMORY BANKS VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    15:53:38 05/20/2010  
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    mem_banks 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: 4 Memory Banks in compliance with Gen2 section 6.3.2.1 
// This module is only intended for prototyping, not synthesis 
///////////////////////////////////////////////////////////////////////////////// 
module mem_banks(reset, enable, data_out, write_enable, bank, data_in, word, clk); 
//We will use reset to preload the EPCID, and other information. If this memory is reset, all written data is 
lost 
//Number of words in each bank 
parameter USER_MEM_WORDS  = 4'd8; 
parameter TID_MEM_WORDS   = 4'd2; 
parameter EPC_MEM_WORDS   = 4'd8; 
parameter RES_MEM_WORDS  = 4'd13; 
//largest number of bits required to address each bank 
parameter MAX_NUM_BITS  = 4'd4; 
input enable; 
input reset; 
input clk; 
//Word to be written/read 
input [MAX_NUM_BITS - 1 : 0] word; 
input [15:0] data_in; 
input write_enable; 
input [1:0] bank; 
output reg [15:0] data_out; 
//Counter used for reset 
integer i; 
//4 banks of 16 bit word memory 
reg [15:0] user_mem [(USER_MEM_WORDS - 1) : 0]; 
reg [15:0] tid_mem  [(TID_MEM_WORDS - 1)  : 0]; 
reg [15:0] epc_mem  [(EPC_MEM_WORDS - 1)  : 0]; 
reg [15:0] res_mem  [(RES_MEM_WORDS - 1)  : 0]; 
always @(negedge clk) begin 
if (reset) begin 
//load epcid 
epc_mem[7] <= 16'h1111; 
epc_mem[6] <= 16'h2222; 
epc_mem[5] <= 16'h3333; 
epc_mem[4] <= 16'h4444; 
epc_mem[3] <= 16'h5555; 
epc_mem[2] <= 16'h6666; 
//load StoredPC 
epc_mem[1] <= 16'h3000; 
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//Stored CRC goes here 
epc_mem[0] <= 16'h0000; 
//User memory bank word 0-1 & 2-3 contain the seed and iv values for the prng 
//After the initial values are retrieved, updated values will be stored in 4-7 
user_mem[0] <= 16'hFF1E; 
user_mem[1] <= 16'hFFAA; 
user_mem[2] <= 16'hAABB; 
user_mem[3] <= 16'hAAB8; 
user_mem[4] <= 16'hFF1E; 
user_mem[5] <= 16'hFFAA; 
user_mem[6] <= 16'hAABB; 
user_mem[7] <= 16'hAAB8; 
//Store TID values 
tid_mem[0]  <= 16'hF0F0; 
tid_mem[1] <= 16'hF0E0; 
//RES mem locations 4-7 are where sensor data is placed 
//Access & Kill Password should be in 0-3 
//Clear RES mem 0-7 
for (i = 0; i < 8; i = i + 1) begin 
res_mem[i] <= 16'h0000; 
end 
//RES mem locations 8-12 store the 80 bit PRESENT key 
res_mem[08] <= 16'h1111; 
res_mem[09] <= 16'h2222; 
res_mem[10] <= 16'h3333; 
res_mem[11] <= 16'h4444; 
res_mem[12] <= 16'h5555; 
end 
//Check if word is too large will handled by either mem controller or fsm 
case (bank) 
2'b00: begin 
res_mem[word] <= data_in; 
end 
2'b01: begin 
epc_mem[word] <= data_in; 
end 
2'b10: begin 
tid_mem[word] <= data_in; 
end 
2'b11: begin 
user_mem[word] <= data_in; 
end 
endcase 
end 
case (bank) 
2'b00: begin 
data_out[15:0] <= res_mem[word]; 
end 
2'b01: begin 
data_out[15:0] <= epc_mem[word]; 
end 
2'b10: begin 
data_out[15:0] <= tid_mem[word]; 
end 
2'b11: begin 
data_out[15:0] <= user_mem[word]; 
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end 
endcase 
end 
end 
endmodule  
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APPENDIX L 

 PRESENT DECRYPTION VERILOG 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Company: University of Massachusetts Amherst 
// Engineer: Michael Todd 
//  
// Create Date:    10:39:07 06/04/2010 
// Design Name:    Class 1 Generatation 2 RFID 
// Module Name:    present80_decrypt 
// Project Name:   M.S. Thesis 
// Revision:    1.0 
// 
// Additional Comments: Module designed to decrypt PRESENT data with an 80 bit 
// key size. Designed only for testing, not synthesis 
////////////////////////////////////////////////////////////////////////////////// 
module present80_with_decryption(clk, enable, reset, plaintext, key, ciphertext, complete); 
input clk; 
input enable; 
input reset; 
input [63:0] ciphertext;//Ciphertext to be decrypted 
input [79:0] key;//secret 80 bit key 
output [63:0] plaintext;//Result of decryption 
output reg complete;//Flag used to indicate decryption is complete 
reg [79:0] roundkey_in;//Round key before update 
wire[79:0] roundkey_out;//Round key after update 
wire [63:0] key_text_xor;//XOR of roundkey and round output 
wire [63:0] sbox_out;//Result of sbox layer 
wire [63:0] permute;//Result of permutation layer 
reg [4:0] roundcounter;//Important: For this to work, must be non-saturating counter 
reg [63:0] temp;//Used to store intermidiate round values 
reg [79:0] keys [31:0];//Precomputed round keys used in decryption 
reg keys_computed;//Flag indicating round keys have been computed 
always@ (posedge clk) begin 
if (reset) begin 
roundkey_in  <= key; 
temp     <= ciphertext; 
roundcounter  <= 1; 
complete   <= 0; 
keys_computed <= 0; 
end 
else if (enable) begin 
if (keys_computed) begin 
case (roundcounter) 
31: begin 
complete <= 1; 
end 
default: begin 
roundkey_in  <= keys[roundcounter]; 
roundcounter  <= roundcounter - 1; 
temp   <= sbox_out; 
end 
0: begin 
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temp   <= sbox_out; 
roundkey_in <= key; 
roundcounter <= 31; 
end 
endcase 
end 
else begin 
//Precompute round keys for decryption 
case (roundcounter) 
default: begin 
roundkey_in   <= roundkey_out; 
roundcounter   <= roundcounter + 1; 
keys[roundcounter]  <= roundkey_out; 
end 
0: begin 
keys_computed <= 1; 
roundcounter  <= 30; 
roundkey_in <= keys[31]; 
temp  <= ciphertext; 
end 
endcase 
end 
end 
end 
keyscheduler_dec k0(.enable(enable), .key_in(roundkey_in), .roundkey(roundkey_out), 
.roundcounter(roundcounter)); 
//sbox layer 
sbox_dec s0(permute[63:60], sbox_out[63:60]); 
sbox_dec s1(permute[59:56], sbox_out[59:56]); 
sbox_dec s2(permute[55:52], sbox_out[55:52]); 
sbox_dec s3(permute[51:48], sbox_out[51:48]); 
sbox_dec s4(permute[47:44], sbox_out[47:44]);  
sbox_dec s5(permute[43:40], sbox_out[43:40]); 
sbox_dec s6(permute[39:36], sbox_out[39:36]); 
sbox_dec s7(permute[35:32], sbox_out[35:32]); 
sbox_dec s8(permute[31:28], sbox_out[31:28]); 
sbox_dec s9(permute[27:24], sbox_out[27:24]); 
sbox_dec s10(permute[23:20], sbox_out[23:20]); 
sbox_dec s11(permute[19:16], sbox_out[19:16]); 
sbox_dec s12(permute[15:12], sbox_out[15:12]); 
sbox_dec s13(permute[11:08], sbox_out[11:08]); 
sbox_dec s14(permute[07:04], sbox_out[07:04]); 
sbox_dec s15(permute[03:00], sbox_out[03:00]); 
//permutation layer 
assign permute[00] = key_text_xor[00]; 
assign permute[01] = key_text_xor[16]; 
assign permute[02] = key_text_xor[32]; 
assign permute[03] = key_text_xor[48]; 
assign permute[04] = key_text_xor[01]; 
assign permute[05] = key_text_xor[17]; 
assign permute[06] = key_text_xor[33]; 
assign permute[07] = key_text_xor[49]; 
assign permute[08] = key_text_xor[02]; 
assign permute[09] = key_text_xor[18]; 
assign permute[10] = key_text_xor[34]; 
assign permute[11] = key_text_xor[50]; 
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assign permute[12] = key_text_xor[03]; 
assign permute[13] = key_text_xor[19]; 
assign permute[14] = key_text_xor[35]; 
assign permute[15] = key_text_xor[51]; 
assign permute[16] = key_text_xor[04]; 
assign permute[17] = key_text_xor[20]; 
assign permute[18] = key_text_xor[36]; 
assign permute[19] = key_text_xor[52]; 
assign permute[20] = key_text_xor[05]; 
assign permute[21] = key_text_xor[21]; 
assign permute[22] = key_text_xor[37]; 
assign permute[23] = key_text_xor[53]; 
assign permute[24] = key_text_xor[06]; 
assign permute[25] = key_text_xor[22]; 
assign permute[26] = key_text_xor[38]; 
assign permute[27] = key_text_xor[54]; 
assign permute[28] = key_text_xor[07]; 
assign permute[29] = key_text_xor[23]; 
assign permute[30] = key_text_xor[39]; 
assign permute[31] = key_text_xor[55]; 
assign permute[32] = key_text_xor[08]; 
assign permute[33] = key_text_xor[24]; 
assign permute[34] = key_text_xor[40]; 
assign permute[35] = key_text_xor[56]; 
assign permute[36] = key_text_xor[09]; 
assign permute[37] = key_text_xor[25]; 
assign permute[38] = key_text_xor[41]; 
assign permute[39] = key_text_xor[57]; 
assign permute[40] = key_text_xor[10]; 
assign permute[41] = key_text_xor[26]; 
assign permute[42] = key_text_xor[42]; 
assign permute[43] = key_text_xor[58]; 
assign permute[44] = key_text_xor[11]; 
assign permute[45] = key_text_xor[27]; 
assign permute[46] = key_text_xor[43]; 
assign permute[47] = key_text_xor[59]; 
assign permute[48] = key_text_xor[12]; 
assign permute[49] = key_text_xor[28]; 
assign permute[50] = key_text_xor[44]; 
assign permute[51] = key_text_xor[60]; 
assign permute[52] = key_text_xor[13]; 
assign permute[53] = key_text_xor[29]; 
assign permute[54] = key_text_xor[45]; 
assign permute[55] = key_text_xor[61]; 
assign permute[56] = key_text_xor[14]; 
assign permute[57] = key_text_xor[30]; 
assign permute[58] = key_text_xor[46]; 
assign permute[59] = key_text_xor[62]; 
assign permute[60] = key_text_xor[15]; 
assign permute[61] = key_text_xor[31]; 
assign permute[62] = key_text_xor[47]; 
assign permute[63] = key_text_xor[63]; 
assign key_text_xor = roundkey_in[79:16] ^ temp; 
assign plaintext = key_text_xor; 
endmodule 
 



 

134 
 

module keyscheduler_dec(enable, key_in, roundkey, roundcounter); 
//This is the key scheduling circuit for PRESENT 
input [79:0] key_in; 
input enable; 
input [4:0] roundcounter; 
//bits [79:16] of key_out are the actual round keys 
output [79:0] roundkey; 
wire [79:0] shiftout, nextkey; 
//Sbox 4 MSB of shifted data 
sbox keysbox(shiftout[79:76], nextkey[79:76]); 
//perform the 18 bit barrel shift operation 
assign shiftout[79:0] = {key_in[18:0], key_in[79:19]}; 
//XOR bits 15-19 with round counter 
assign nextkey[19] = shiftout[19] ^ roundcounter[4]; 
assign nextkey[18] = shiftout[18] ^ roundcounter[3]; 
assign nextkey[17] = shiftout[17] ^ roundcounter[2]; 
assign nextkey[16] = shiftout[16] ^ roundcounter[1]; 
assign nextkey[15] = shiftout[15] ^ roundcounter[0]; 
assign nextkey[14:0] = shiftout[14:0]; 
assign nextkey[75:20] = shiftout[75:20]; 
assign roundkey = (enable) ? nextkey : 0; 
endmodule 
 
module sbox_dec(sbox_in, sbox_out); 
//This module is the circuit used for non-linear permutation in the  
//Present block cipher 
input [3:0] sbox_in; 
output reg [3:0] sbox_out; 
always @* begin 
case (sbox_in) 
4'h0: sbox_out <= 4'h5; 
4'h1: sbox_out <= 4'hE; 
4'h2: sbox_out <= 4'hF; 
4'h3: sbox_out <= 4'h8; 
4'h4: sbox_out <= 4'hC; 
4'h5: sbox_out <= 4'h1; 
4'h6: sbox_out <= 4'h2; 
4'h7: sbox_out <= 4'hD; 
4'h8: sbox_out <= 4'hB; 
4'h9: sbox_out <= 4'h4; 
4'hA: sbox_out <= 4'h6; 
4'hB: sbox_out <= 4'h3; 
4'hC: sbox_out <= 4'h0; 
4'hD: sbox_out <= 4'h7; 
4'hE: sbox_out <= 4'h9; 
4'hF: sbox_out <= 4'hA; 
endcase 
end 
endmodule  
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APPENDIX M 

WAVEFORM TEXT FILE TO VERILOG TESTBENCH SCRIPT 

#!/usr/bin/perl 
 
#Waveform Text file to be parsed 
my $file1 = 'access_password_test_short_Ch1.txt'; 
 
#Open file handler for both result files 
open(FILE1, $file1); 
 
#Load file contents into an array for checking 
my @file1_contents = <FILE1>; 
 
#Close the file handler 
close(FILE1); 
 
#output signal name 
my $sig_name = 'temp2'; 
 
#Counters 
my $j; 
my $k; 
 
my $result; 
 
my $exponent; 
 
#if simulation starts with negative value add offset to all numbers 
my $offset = 0; 
 
my $tempresult; 
 
$j = 0; 
 
$k = 0; 
 
#when these values differ, append output 
my $current_voltage; 
my $prev_voltage; 
 
my $temp_voltage; 
 
my $current_time = 0; 
my $prev_time = 0; 
 
 
#my $sig_name = 'demod_data'; 
 
for $i (@file1_contents) { 
    chomp $i; 
    
    #check if first number is negative to apply offset 
    if($i =~ /^\s+(-?)(\d)\.(\d+)e(-?)(\d+)\s+(-?)(\d)\.(\d+)e(-|\+)(\d+)/) { 
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        if ($j == 0) { 
            $j = 1; 
            #calulate offset 
            $result = "$1$2.$3"; 
            $exponent = "$4$5"; 
            $exponent = 10**$exponent; 
            $offset = -1*$result*$exponent*10**9; #in ns 
            #calculate starting voltage 
            $result = "$6$7.$8"; 
            $exponent = "$9$10"; 
            $exponent = 10**$exponent; 
            
            #only care about 0 and non 0 values 
            $temp_voltage = int($result*$exponent); 
 
            if ($temp_voltage > 0) { 
                $prev_voltage = 1; 
 
                print "#0 $sig_name = 1\;\n"; 
            } 
            else { 
                $prev_voltage = 0; 
                print "#0 $sig_name = 0\;\n"; 
            } 
        } 
        else { 
            #calulate current time (in ns) 
            $result = "$1$2.$3"; 
            $exponent = "$4$5"; 
            $exponent = 10**$exponent; 
            $tempresult = $result*$exponent*10**9 + $offset; #in ns 
 
 
            #calculate current voltage value 
            $result = "$6$7.$8"; 
            $exponent = "$9$10"; 
            $exponent = 10**$exponent; 
            
            #only care about 0 and non 0 values 
            $current_voltage = int($result*$exponent); 
            
            #if ($k < 100000) { 
            #    print "$current_voltage\n"; 
            #    $k++; 
            #} 
            
            if ($current_voltage > 0) { 
                $current_voltage = 1; 
            } 
            else { 
                #could be a negative voltage 
                $current_voltage = 0; 
            } 
 
            #print "#$tempresult $sig_name = $current_voltage\n"; 
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            if ($current_voltage == $prev_voltage) { 
                #do nothing if the value did not change... may want to switch this around 
            } 
            else { 
                #just want how many ns 
                $current_time = $tempresult - $prev_time; 
 
                print "#$current_time $sig_name = $current_voltage\;\n"; 
                $prev_voltage = $current_voltage; 
                $prev_time = $current_time + $prev_time; 
            } 
 
        } 
    } 
 
}; 
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